Immunotherapy in the context of immune-specialized environment of brain metastases

F. James, M. Lorger
{"title":"Immunotherapy in the context of immune-specialized environment of brain metastases","authors":"F. James, M. Lorger","doi":"10.1093/discim/kyad023","DOIUrl":null,"url":null,"abstract":"Brain metastases (BrM) develop in 20 to 40% of patients with advanced cancer. They mainly originate from lung cancer, melanoma, breast cancer and renal cell carcinoma, and are associated with a poor prognosis. While patients with BrM traditionally lack effective treatment options, immunotherapy is increasingly gaining in importance in this group of patients, with clinical trials in the past decade demonstrating efficacy and safety of immune checkpoint blockade in BrM originating from specific tumor types, foremost melanoma. The brain is an immune-specialized environment with several unique molecular, cellular, and anatomical features that affect immune responses, including those against tumors. In this review we discuss the potential role that some of these unique characteristics may play in the efficacy of immunotherapy, mainly focusing on the lymphatic drainage in the brain and the role of systemic anti-tumor immunity that develops due to the presence of concurrent extracranial disease in addition to BrM.","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":"8 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discovery immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/discim/kyad023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain metastases (BrM) develop in 20 to 40% of patients with advanced cancer. They mainly originate from lung cancer, melanoma, breast cancer and renal cell carcinoma, and are associated with a poor prognosis. While patients with BrM traditionally lack effective treatment options, immunotherapy is increasingly gaining in importance in this group of patients, with clinical trials in the past decade demonstrating efficacy and safety of immune checkpoint blockade in BrM originating from specific tumor types, foremost melanoma. The brain is an immune-specialized environment with several unique molecular, cellular, and anatomical features that affect immune responses, including those against tumors. In this review we discuss the potential role that some of these unique characteristics may play in the efficacy of immunotherapy, mainly focusing on the lymphatic drainage in the brain and the role of systemic anti-tumor immunity that develops due to the presence of concurrent extracranial disease in addition to BrM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑转移瘤免疫特化环境下的免疫疗法
20%至40%的晚期癌症患者会出现脑转移(BrM)。脑转移瘤主要源于肺癌、黑色素瘤、乳腺癌和肾细胞癌,预后较差。虽然脑转移瘤患者传统上缺乏有效的治疗方案,但免疫疗法在这类患者中的重要性正与日俱增,过去十年的临床试验表明,免疫检查点阻断疗法对源自特定肿瘤类型(最重要的是黑色素瘤)的脑转移瘤具有疗效和安全性。大脑是一个免疫特化的环境,具有一些独特的分子、细胞和解剖特征,这些特征会影响免疫反应,包括针对肿瘤的免疫反应。在这篇综述中,我们将讨论其中一些独特特征在免疫疗法的疗效中可能发挥的作用,主要侧重于脑部淋巴引流以及除 BrM 外因并发颅外疾病而产生的全身性抗肿瘤免疫的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How (Eco)immunology can augment global EcoHealth programmes: opportunities, needs, and challenges. Unravelling monocyte functions: from the guardians of health to the regulators of disease. Identification of a transcription factor network regulating anti-TNF mediated IL10 expression in human CD4+ T cells Correction to: Lunar-linked biological rhythms in the immune system of freshwater three-spined stickleback. Assessing immune phenotypes using simple proxy measures: promise and limitations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1