Relationship between the Intrinsic Properties of Sands and the Parameters of Mathematical Particle Size Distribution Models for Predicting Geotechnical Quantities

Brige Dublin Boussa Elenga, L. Ahouet, Sylvain Ndinga Okina
{"title":"Relationship between the Intrinsic Properties of Sands and the Parameters of Mathematical Particle Size Distribution Models for Predicting Geotechnical Quantities","authors":"Brige Dublin Boussa Elenga, L. Ahouet, Sylvain Ndinga Okina","doi":"10.36348/sjce.2023.v07i10.003","DOIUrl":null,"url":null,"abstract":"This work characterizes the relationships between the intrinsic properties of sands and the parameters of four mathematical models that best simulate the experimental curves and geotechnical properties of sands used in construction. Origin.Pro.2019\" software was used to smooth the grading curves, define the parameters of the mathematical models and link them to the geotechnical data. To achieve this objective, the correlations between the intrinsic properties of the sands are developed using mathematical models with the highest coefficient of determination (R2) and the lowest statistical coefficient (χ²). The correlations used are those with a coefficient of determination greater than or equal to 0.9. The results obtained show that the models used provide a good description of the experimental curves. The model parameters are correlated with the granulometric fractions and the geotechnical parameters. The evolution of the points expressing the parameters of the Gaussian and exponential models (A1, Xc, A, W, Yo) and the parameter (t1) as a function of seven randomly chosen geotechnical quantities, are polylinear and linear fits, respectively. This study is important for predicting a geotechnical quantity from a modelled grading curve, by solving the mathematical expressions of the models used.","PeriodicalId":437137,"journal":{"name":"Saudi Journal of Civil Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Saudi Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36348/sjce.2023.v07i10.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work characterizes the relationships between the intrinsic properties of sands and the parameters of four mathematical models that best simulate the experimental curves and geotechnical properties of sands used in construction. Origin.Pro.2019" software was used to smooth the grading curves, define the parameters of the mathematical models and link them to the geotechnical data. To achieve this objective, the correlations between the intrinsic properties of the sands are developed using mathematical models with the highest coefficient of determination (R2) and the lowest statistical coefficient (χ²). The correlations used are those with a coefficient of determination greater than or equal to 0.9. The results obtained show that the models used provide a good description of the experimental curves. The model parameters are correlated with the granulometric fractions and the geotechnical parameters. The evolution of the points expressing the parameters of the Gaussian and exponential models (A1, Xc, A, W, Yo) and the parameter (t1) as a function of seven randomly chosen geotechnical quantities, are polylinear and linear fits, respectively. This study is important for predicting a geotechnical quantity from a modelled grading curve, by solving the mathematical expressions of the models used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
砂的内在特性与用于预测岩土工程量的粒度分布数学模型参数之间的关系
这项工作描述了砂的内在特性与四个数学模型参数之间的关系,这四个数学模型能够最好地模拟建筑用砂的实验曲线和岩土特性。使用 "Origin.Pro.2019 "软件平滑分级曲线、定义数学模型参数并将其与岩土工程数据联系起来。为实现这一目标,使用确定系数(R2)最高、统计系数(χ²)最低的数学模型来建立砂的内在特性之间的相关性。所使用的相关性是决定系数大于或等于 0.9 的相关性。所得结果表明,所使用的模型能很好地描述实验曲线。模型参数与粒度分数和岩土参数相关。表示高斯模型和指数模型参数(A1、Xc、A、W、Yo)以及参数(t1)的点的演变与随机选择的七个岩土工程量的函数关系分别为多线性拟合和线性拟合。通过求解所用模型的数学表达式,这项研究对于从模拟的岩土工程量曲线预测岩土工程量非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Laboratory Evaluation of the Hydraulic Conductivity as a Function of Changes in the Particle Size of a Cubitermes Sp Termite Mound Soil Treated with Lime Laboratory Evaluation of the Hydraulic Conductivity as a Function of Changes in the Particle Size of a Cubitermes Sp Termite Mound Soil Treated with Lime On-Grid Solar Traction System Experimental and Theoretical Shear Strength of Simply Supported Reinforced Concrete Beam Relationship between the Intrinsic Properties of Sands and the Parameters of Mathematical Particle Size Distribution Models for Predicting Geotechnical Quantities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1