MIL, SIL and PIL Implementation for Closed Loop Control of Flyback Converter

IF 1 Q3 MULTIDISCIPLINARY SCIENCES gazi university journal of science Pub Date : 2023-11-01 DOI:10.35378/gujs.1342626
Muhammad Ali, İsmet Şen, Saliha Öztürk, Emre Avci
{"title":"MIL, SIL and PIL Implementation for Closed Loop Control of Flyback Converter","authors":"Muhammad Ali, İsmet Şen, Saliha Öztürk, Emre Avci","doi":"10.35378/gujs.1342626","DOIUrl":null,"url":null,"abstract":"Power electronic systems are rapidly evolving; thus, effective prototyping methods are required to test control algorithms and assess system performance prior to hardware implementation. This research suggests a Model-In-The-Loop (MIL), Software-In-The-Loop (SIL), and Processor-In-The-Loop (PIL) methodologies-based complete prototyping strategy for flyback converters using the TI F28069M Launchpad kit. These techniques can be combined to evaluate control strategies accurately and quickly, speeding up design cycles and enhancing system reliability. The proposed prototyping platform is presented in this work, along with a thorough explanation of each prototyping stage and its associated advantages. The effectiveness of the suggested approach for 50W rated power flyback converter in terms of quick algorithm development, system simulation, real-time control implementation and controller design accuracy is analyzed and shown by experimental results. The results show that the performance of the designed controller for the flyback converter is almost the same as in MIL and SIL implementation in terms of the overshoot and settling time in the reference voltage tracking. On the other hand, in the PIL implementation, the overshoot performance of the controller deviates by 1.18% more than in SIL and MIL implementation. These also confirm that the flyback control system's performance is reliable and effective during all phases of development.","PeriodicalId":12615,"journal":{"name":"gazi university journal of science","volume":"9 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"gazi university journal of science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35378/gujs.1342626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Power electronic systems are rapidly evolving; thus, effective prototyping methods are required to test control algorithms and assess system performance prior to hardware implementation. This research suggests a Model-In-The-Loop (MIL), Software-In-The-Loop (SIL), and Processor-In-The-Loop (PIL) methodologies-based complete prototyping strategy for flyback converters using the TI F28069M Launchpad kit. These techniques can be combined to evaluate control strategies accurately and quickly, speeding up design cycles and enhancing system reliability. The proposed prototyping platform is presented in this work, along with a thorough explanation of each prototyping stage and its associated advantages. The effectiveness of the suggested approach for 50W rated power flyback converter in terms of quick algorithm development, system simulation, real-time control implementation and controller design accuracy is analyzed and shown by experimental results. The results show that the performance of the designed controller for the flyback converter is almost the same as in MIL and SIL implementation in terms of the overshoot and settling time in the reference voltage tracking. On the other hand, in the PIL implementation, the overshoot performance of the controller deviates by 1.18% more than in SIL and MIL implementation. These also confirm that the flyback control system's performance is reliable and effective during all phases of development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反激式转换器闭环控制的 MIL、SIL 和 PIL 实现
电力电子系统发展迅速,因此需要有效的原型开发方法,以便在硬件实施之前测试控制算法和评估系统性能。本研究提出了一种基于模型在环 (MIL)、软件在环 (SIL) 和处理器在环 (PIL) 方法的完整原型开发策略,适用于使用 TI F28069M Launchpad 套件的反激式转换器。这些技术可结合使用,以准确快速地评估控制策略,从而加快设计周期并提高系统可靠性。本作品介绍了所建议的原型验证平台,并对每个原型验证阶段及其相关优势进行了详细说明。实验结果分析并显示了针对 50W 额定功率反激式转换器所建议的方法在快速算法开发、系统仿真、实时控制实现和控制器设计精度方面的有效性。结果表明,反激式转换器的设计控制器在参考电压跟踪的过冲和沉淀时间方面的性能与 MIL 和 SIL 实现几乎相同。另一方面,在 PIL 实现中,控制器的过冲性能比 SIL 和 MIL 实现多偏差 1.18%。这也证实了反激式控制系统在所有开发阶段的性能都是可靠和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
gazi university journal of science
gazi university journal of science MULTIDISCIPLINARY SCIENCES-
CiteScore
1.60
自引率
11.10%
发文量
87
期刊介绍: The scope of the “Gazi University Journal of Science” comprises such as original research on all aspects of basic science, engineering and technology. Original research results, scientific reviews and short communication notes in various fields of science and technology are considered for publication. The publication language of the journal is English. Manuscripts previously published in another journal are not accepted. Manuscripts with a suitable balance of practice and theory are preferred. A review article is expected to give in-depth information and satisfying evaluation of a specific scientific or technologic subject, supported with an extensive list of sources. Short communication notes prepared by researchers who would like to share the first outcomes of their on-going, original research work are welcome.
期刊最新文献
Experimental Investigation of a Small-Scale Parabolic Trough Concentrated Solar Power ‎Systems EVALUATION OF BUILDING ENERGY PERFORMANCE BASED ON SETTLEMENT SCALE DESIGN PARAMETERS USING BIM TOOLS Invariants of Immersions on n-Dimensional Affine Manifold MIL, SIL and PIL Implementation for Closed Loop Control of Flyback Converter Lean Six Sigma Studies in Türkiye: A Literature Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1