Green Biosynthesis of Silver Nanoparticles were Obtained from the Extract of Pomegranate (Punica granatum L.) Leaves by Supercritical Extraction Using Microwave Method
{"title":"Green Biosynthesis of Silver Nanoparticles were Obtained from the Extract of Pomegranate (Punica granatum L.) Leaves by Supercritical Extraction Using Microwave Method","authors":"Gönül Serdar","doi":"10.18466/cbayarfbe.1338606","DOIUrl":null,"url":null,"abstract":"In this study, pomegranate (Punica granatum L.) leaf extract and 2% (w/v) aqueous solutions isolated by SFE extraction and microwave extraction were used to create silver nanoparticles (AgNPs). The pomegranate was grown in Turkey's Eastern Black Sea region. AgNO3 solution (0.25, 0.5, and 1 mM) received separate additions of 0.1 and 0.2 mL extract before being microwave-irradiated. Ag nanoparticles made using green chemical techniques were characterized by UV-Visible, , XRD, TEM, Zetasizer and FT-IR. By analyzing the plasmon resonance absorption (SPR) spectra by the UV-Visible technique, the ideal circumstances were identified. The face-centered cubic crystalline silver nanostructures' lattice planes (111), (200), (220), and (311) show that the different Bragg reflection peaks occurred at 2 values of 38.1°, 44.3°, 64.6°, and 77.6°. The average particle size of Ag nanoparticles produced by microwave extraction in an aqueous medium was 86.020.5788 nm, the zeta potential was -140.777 mV, and the polydispersity index was 0.4050.224, according to the results of zeta-Sizer study. The UV-vis absorption spectra of the AuNP solutions, which were kept in a refrigerator, barely altered and remained constant for roughly 4-5 months.","PeriodicalId":9653,"journal":{"name":"Celal Bayar Üniversitesi Fen Bilimleri Dergisi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Celal Bayar Üniversitesi Fen Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18466/cbayarfbe.1338606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, pomegranate (Punica granatum L.) leaf extract and 2% (w/v) aqueous solutions isolated by SFE extraction and microwave extraction were used to create silver nanoparticles (AgNPs). The pomegranate was grown in Turkey's Eastern Black Sea region. AgNO3 solution (0.25, 0.5, and 1 mM) received separate additions of 0.1 and 0.2 mL extract before being microwave-irradiated. Ag nanoparticles made using green chemical techniques were characterized by UV-Visible, , XRD, TEM, Zetasizer and FT-IR. By analyzing the plasmon resonance absorption (SPR) spectra by the UV-Visible technique, the ideal circumstances were identified. The face-centered cubic crystalline silver nanostructures' lattice planes (111), (200), (220), and (311) show that the different Bragg reflection peaks occurred at 2 values of 38.1°, 44.3°, 64.6°, and 77.6°. The average particle size of Ag nanoparticles produced by microwave extraction in an aqueous medium was 86.020.5788 nm, the zeta potential was -140.777 mV, and the polydispersity index was 0.4050.224, according to the results of zeta-Sizer study. The UV-vis absorption spectra of the AuNP solutions, which were kept in a refrigerator, barely altered and remained constant for roughly 4-5 months.