Multigrid method for the solution of thermal elastohydrodynamic lubrication point contact problem with surface asperities

V. Awati, Parashuram M. Obannavar, Mahesh Kumar Nanjaiah
{"title":"Multigrid method for the solution of thermal elastohydrodynamic lubrication point contact problem with surface asperities","authors":"V. Awati, Parashuram M. Obannavar, Mahesh Kumar Nanjaiah","doi":"10.59400/mea.v1i1.94","DOIUrl":null,"url":null,"abstract":"The paper presents, the numerical investigation of point contact thermal elasto-hydrodynamic lubrication (EHL) with surface asperities are analyzed. The effect of temperature and surface roughness on fluid film thickness is studied in detail. The governing equations comprises Reynolds, film thickness, load balance and energy equations with appropriate boundary conditions. The second order finite difference approximation is used to discretize the governing equations and the resultant nonlinear system of algebraic equations is solved using Multigrid V-cycle with full approximation scheme (FAS) technique. Multi level multi integration (MLMI) technique is employed to solve the film thickness equation. The obtained results are illustrated in the form of graphs and tables which are comparable with earlier findings. The film thickness profiles shows dimple near to the outlet region due to temperature-viscosity wedge mechanism. Isothermal minimum film thickness is higher than the thermal minimum film thickness. Minimum film thickness is much smaller due to slide to roll ratio is positive ascompared to negative, whereas the behavior of central film thickness is contrast as that of minimum film thickness.","PeriodicalId":509420,"journal":{"name":"Mechanical Engineering Advances","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59400/mea.v1i1.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents, the numerical investigation of point contact thermal elasto-hydrodynamic lubrication (EHL) with surface asperities are analyzed. The effect of temperature and surface roughness on fluid film thickness is studied in detail. The governing equations comprises Reynolds, film thickness, load balance and energy equations with appropriate boundary conditions. The second order finite difference approximation is used to discretize the governing equations and the resultant nonlinear system of algebraic equations is solved using Multigrid V-cycle with full approximation scheme (FAS) technique. Multi level multi integration (MLMI) technique is employed to solve the film thickness equation. The obtained results are illustrated in the form of graphs and tables which are comparable with earlier findings. The film thickness profiles shows dimple near to the outlet region due to temperature-viscosity wedge mechanism. Isothermal minimum film thickness is higher than the thermal minimum film thickness. Minimum film thickness is much smaller due to slide to roll ratio is positive ascompared to negative, whereas the behavior of central film thickness is contrast as that of minimum film thickness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多网格法求解带表面粗糙度的热弹性流体动力润滑点接触问题
本文对带有表面粗糙度的点接触热弹性流体动力润滑(EHL)进行了数值研究分析。详细研究了温度和表面粗糙度对流体薄膜厚度的影响。控制方程包括雷诺方程、膜厚方程、载荷平衡方程和能量方程,并带有适当的边界条件。使用二阶有限差分近似法对支配方程进行离散化,并使用多网格 V 循环和全近似方案 (FAS) 技术对由此产生的非线性代数方程系统进行求解。采用多级多重积分(MLMI)技术求解薄膜厚度方程。得到的结果以图表的形式进行了说明,与之前的研究结果具有可比性。由于温度-粘度楔形机制,薄膜厚度曲线在出口区域附近出现凹陷。等温最小膜厚高于热最小膜厚。由于滑动与滚动比率为正值而非负值,最小膜厚要小得多,而中心膜厚的行为与最小膜厚的行为形成对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prelithiation of electrodes in lithium-ion capacitors: A review The main distinguishing characteristic of active vibration control Low carbon integrated vehicles and buildings Low carbon integrated vehicles and buildings Mechanical properties of polypyrrole/SnO2 nanocomposites and its LPG sensing application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1