Perbandingan Pre-Trained CNN: Klasifikasi Pengenalan Bahasa Isyarat Huruf Hijaiyah

Yulrio Brianorman, Rinaldi Munir
{"title":"Perbandingan Pre-Trained CNN: Klasifikasi Pengenalan Bahasa Isyarat Huruf Hijaiyah","authors":"Yulrio Brianorman, Rinaldi Munir","doi":"10.21456/vol13iss1pp52-59","DOIUrl":null,"url":null,"abstract":"The number of documented deaf people continues to increase. To communicate with each other, the deaf use sign language. The problem arises when Muslims with hearing impairment or deafness need to recite the Al-Quran. Muslims recite Al-Quran using their voice, but for the deaf, there are no available means to do the reciting. Thus, learning hijaiyah letters using finger gestures is considered important to develop. In this study, we use the recognition of hijaiyah letters based on pictures as the learning model. The real-time-based recognition then uses the learning model. This study uses 4 CNN pre-trained models, namely MnetV2, VGG16, ResNet50, and Xception. The learning process shows that MnetV2, VGG16, and Xception reach the accuracy limit of 99.85% in 2, 3, and 11 s, respectively. Meanwhile, ResNet50 cannot reach the accuracy limit after processing 100 s. ResNet50 achieves 82.12% accuracy. The testing process shows that MnetV2, VGG16, and ResNet50 achieve 100% precision, recall, f1-score, and accuracy. ResNet50 shows figures 81.55%, 86.04%, 82.04%, and 82.58%. The implementing process of the learning outcomes from MnetV2 shows good performance for recognizing finger shapes in real-time.","PeriodicalId":141310,"journal":{"name":"J. Sistem Info. Bisnis","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Sistem Info. Bisnis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21456/vol13iss1pp52-59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The number of documented deaf people continues to increase. To communicate with each other, the deaf use sign language. The problem arises when Muslims with hearing impairment or deafness need to recite the Al-Quran. Muslims recite Al-Quran using their voice, but for the deaf, there are no available means to do the reciting. Thus, learning hijaiyah letters using finger gestures is considered important to develop. In this study, we use the recognition of hijaiyah letters based on pictures as the learning model. The real-time-based recognition then uses the learning model. This study uses 4 CNN pre-trained models, namely MnetV2, VGG16, ResNet50, and Xception. The learning process shows that MnetV2, VGG16, and Xception reach the accuracy limit of 99.85% in 2, 3, and 11 s, respectively. Meanwhile, ResNet50 cannot reach the accuracy limit after processing 100 s. ResNet50 achieves 82.12% accuracy. The testing process shows that MnetV2, VGG16, and ResNet50 achieve 100% precision, recall, f1-score, and accuracy. ResNet50 shows figures 81.55%, 86.04%, 82.04%, and 82.58%. The implementing process of the learning outcomes from MnetV2 shows good performance for recognizing finger shapes in real-time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比较预训练 CNN:Hijaiyah 字母手语识别分类
记录在案的聋人数量不断增加。为了相互交流,聋人使用手语。当有听力障碍或耳聋的穆斯林需要背诵《古兰经》时,问题就出现了。穆斯林用嗓音诵读《古兰经》,但对于聋人来说,没有可用的诵读方式。因此,使用手指手势学习希杰耶字母被认为是重要的发展方向。在这项研究中,我们使用基于图片的希杰耶字母识别作为学习模型。然后使用学习模型进行基于实时的识别。本研究使用了 4 个 CNN 预训练模型,即 MnetV2、VGG16、ResNet50 和 Xception。学习过程显示,MnetV2、VGG16 和 Xception 分别在 2 秒、3 秒和 11 秒内达到 99.85% 的准确率上限。与此同时,ResNet50 在处理 100 秒后仍无法达到准确率上限,准确率为 82.12%。测试过程显示,MnetV2、VGG16 和 ResNet50 的精确度、召回率、f1 分数和准确率均达到 100%。ResNet50 的数据分别为 81.55%、86.04%、82.04% 和 82.58%。MnetV2 学习成果的实施过程表明,实时识别手指形状的性能良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analisis Kesuksesan Sistem Informasi Manajemen Daerah (SIMDA) dengan Metode Delone dan Mclean Success Model dan Technology Acceptance Model (TAM) Penambahan Variabel Tingkat Kecerdasan dari Chatbot untuk Mempengaruhi Kepercayaan Pengguna dalam Aplikasi Telekonsultasi Kesehatan Implementasi Framework Laravel Dalam Pembuatan Sistem Pencatatan Notula Berbasis Website Penerapan PIECES Framework dalam Analisis Kepuasan Pengguna F-Learn UKSW saat Pandemi Covid-19 Perbandingan Pre-Trained CNN: Klasifikasi Pengenalan Bahasa Isyarat Huruf Hijaiyah
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1