The Re-parametrization of the DAS Model Based on 2016-2021 Data of the National Forestry Database: New Results on Cutting Age Distributions

Q4 Agricultural and Biological Sciences Acta Silvatica et Lignaria Hungarica Pub Date : 2023-06-01 DOI:10.37045/aslh-2023-0005
P. Kottek, Éva Király, Tamás Mertl, A. Borovics
{"title":"The Re-parametrization of the DAS Model Based on 2016-2021 Data of the National Forestry Database: New Results on Cutting Age Distributions","authors":"P. Kottek, Éva Király, Tamás Mertl, A. Borovics","doi":"10.37045/aslh-2023-0005","DOIUrl":null,"url":null,"abstract":"This paper presents the DAS forest model (Distributions Applied on Stands model), a forest stand-based model suitable for projecting standing volume, increment, harvest, and carbon sequestration on the stand, regional, or country levels. The forest subcompartment is the modelling unit of the DAS model, which uses National Forestry Database (NFD) data, including geospatial data. The model is suitable for further processing spatially explicit input parameters such as climate change forecasts. The model output is also georeferenced and can be further processed using GIS software. The model handles the data of approximately 600,000 forest subcompartments. Data on tree species, origin, age, growing stock, increment etc. of each subcompartment are stored in “tree-species rows”, which are the sub-units of the model. The DAS model simultaneously processes the data of 1.2 million tree species rows and describes their development in time. It uses parameters based on the actual processes of the reference period. It also uses empiric cutting age distributions and a regeneration matrix derived from historic NFD data. The ForestLab project (TKP2021-NKTA-43) is currently engaged in the re-parametrization of the model based on 2016–2021 data. This study discusses the functions of the harvesting ratio distribution in the modelling process and in determining the subcompartments selected for harvest. The paper presents the latest results regarding the 2016–2021 cutting age distributions and the preparation of the new set of species-specific and yield class-specific average harvesting ratio distributions.","PeriodicalId":53620,"journal":{"name":"Acta Silvatica et Lignaria Hungarica","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Silvatica et Lignaria Hungarica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37045/aslh-2023-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the DAS forest model (Distributions Applied on Stands model), a forest stand-based model suitable for projecting standing volume, increment, harvest, and carbon sequestration on the stand, regional, or country levels. The forest subcompartment is the modelling unit of the DAS model, which uses National Forestry Database (NFD) data, including geospatial data. The model is suitable for further processing spatially explicit input parameters such as climate change forecasts. The model output is also georeferenced and can be further processed using GIS software. The model handles the data of approximately 600,000 forest subcompartments. Data on tree species, origin, age, growing stock, increment etc. of each subcompartment are stored in “tree-species rows”, which are the sub-units of the model. The DAS model simultaneously processes the data of 1.2 million tree species rows and describes their development in time. It uses parameters based on the actual processes of the reference period. It also uses empiric cutting age distributions and a regeneration matrix derived from historic NFD data. The ForestLab project (TKP2021-NKTA-43) is currently engaged in the re-parametrization of the model based on 2016–2021 data. This study discusses the functions of the harvesting ratio distribution in the modelling process and in determining the subcompartments selected for harvest. The paper presents the latest results regarding the 2016–2021 cutting age distributions and the preparation of the new set of species-specific and yield class-specific average harvesting ratio distributions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于国家林业数据库 2016-2021 年数据的 DAS 模型重新参数化:关于伐木年龄分布的新结果
本文介绍了 DAS 森林模型(Distributions Applied on Stands model),这是一个基于林分的模型,适用于预测林分、地区或国家层面的立木蓄积量、增量、采伐量和碳汇。森林分区是 DAS 模型的建模单元,它使用国家林业数据库(NFD)数据,包括地理空间数据。该模型适用于进一步处理空间显式输入参数,如气候变化预测。该模型的输出也有地理坐标,可使用地理信息系统软件进一步处理。该模型可处理约 600,000 个森林分区的数据。每个子单元的树种、原产地、树龄、生长量、增量等数据都存储在 "树种行 "中,"树种行 "是模型的子单元。DAS 模型可同时处理 120 万个树种行的数据,并及时描述其发展情况。它使用的参数是基于参照期的实际过程。它还使用了根据经验得出的砍伐年龄分布和从历史 NFD 数据中得出的再生矩阵。ForestLab 项目(TKP2021-NKTA-43)目前正在根据 2016-2021 年的数据对模型进行重新参数化。本研究讨论了采伐比分布在建模过程中以及在确定所选采伐分区方面的功能。论文介绍了 2016-2021 年伐龄分布的最新结果,以及新的特定物种和特定产量等级平均采伐比分布的编制情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Silvatica et Lignaria Hungarica
Acta Silvatica et Lignaria Hungarica Agricultural and Biological Sciences-Forestry
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
The Re-parametrization of the DAS Model Based on 2016-2021 Data of the National Forestry Database: New Results on Cutting Age Distributions A Comparative Study of Hungarian and Indian University Students’ Attitudes Toward Forestry Comparative Studies on Leaf Micromorphology of the Abaxial Surface of Quercus robur L. subsp. robur and Quercus robur L. subsp. pedunculiflora (K. KOCH) MENITSKY Effects of Red Mud on Plant Growth in an Artificial Soil Mixture Social Network Analysis in Wood Industry Projects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1