{"title":"SiO2–alginate–melittin nano-conjugates suppress the proliferation of ovarian cancer cells: a controlled release approach leveraging alginate lyase","authors":"Lihui Si, Shuli Yang, Ruixin Lin, Shiyu Gu, Chuhan Yan, Jia Yan","doi":"10.1186/s12645-023-00241-3","DOIUrl":null,"url":null,"abstract":"Ovarian cancer treatment is challenged by resistance and off-target effects. Melittin shows promise against cancer but is limited by its instability and harmful cellular interactions. Our study introduces SiO2–alginate–melittin nano-conjugates (SAMNs), incorporating alginate lyase to enhance melittin's release and mitigate alginate drawbacks. We combined melittin with alginate and mesoporous silica, using alginate lyase to control melittin release. Effects on SKOV3 ovarian cancer cells were evaluated via viability, invasion, migration assays, ROS levels, apoptosis-related proteins, and mitochondrial function tests. SAMNs extended melittin’s cell control, reducing proliferation, invasion, and migration compared to free melittin. Alginate lyase facilitated controlled melittin release, decreasing off-target cytotoxicity. The only melittin group showed severe mitochondrial impairment, while the SAMNs and lyase groups had moderated impacts, indicating a dose-dependent effect on mitochondrial health and cell uptake. SAMNs, especially with alginate lyase, offer an effective strategy for ovarian cancer treatment, optimizing melittin delivery while minimizing adverse effects of alginate. This approach enhances the therapeutic potential of melittin in combating ovarian cancer.","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"13 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12645-023-00241-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ovarian cancer treatment is challenged by resistance and off-target effects. Melittin shows promise against cancer but is limited by its instability and harmful cellular interactions. Our study introduces SiO2–alginate–melittin nano-conjugates (SAMNs), incorporating alginate lyase to enhance melittin's release and mitigate alginate drawbacks. We combined melittin with alginate and mesoporous silica, using alginate lyase to control melittin release. Effects on SKOV3 ovarian cancer cells were evaluated via viability, invasion, migration assays, ROS levels, apoptosis-related proteins, and mitochondrial function tests. SAMNs extended melittin’s cell control, reducing proliferation, invasion, and migration compared to free melittin. Alginate lyase facilitated controlled melittin release, decreasing off-target cytotoxicity. The only melittin group showed severe mitochondrial impairment, while the SAMNs and lyase groups had moderated impacts, indicating a dose-dependent effect on mitochondrial health and cell uptake. SAMNs, especially with alginate lyase, offer an effective strategy for ovarian cancer treatment, optimizing melittin delivery while minimizing adverse effects of alginate. This approach enhances the therapeutic potential of melittin in combating ovarian cancer.
Cancer NanotechnologyPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
5.20
自引率
1.80%
发文量
37
审稿时长
15 weeks
期刊介绍:
Aim:
Recognizing cancer as a group of diseases caused by nanostructural problems (i.e. with DNA) and also that there are unique benefits to approaches inherently involving nanoscale structures and processes to treat the disease, the journal Cancer Nanotechnology aims to disseminate cutting edge research; to promote emerging trends in the use of nanostructures and the induction of nanoscale processes for the prevention, diagnosis, treatment of cancer; and to cover related ancillary areas.
Scope:
Articles describing original research in the use of nanostructures and the induction of nanoscale processes for the prevention, diagnosis and treatment of cancer (open submission process). Review, editorial and tutorial articles picking up on subthemes of emerging importance where nanostructures and the induction of nanoscale processes are used for the prevention, diagnosis and treatment of cancer.