Claire T Hemingway, Smruti Pimplikar, Felicity Muth
{"title":"Wild bumblebees use both absolute and relative evaluation when foraging","authors":"Claire T Hemingway, Smruti Pimplikar, Felicity Muth","doi":"10.1093/beheco/arad112","DOIUrl":null,"url":null,"abstract":"Foraging theory assumes that animals assess value based on objective payoffs; however, animals often evaluate rewards comparatively, forming expectations based on recent experience. This form of evaluation may be particularly relevant for nectar foragers such as bumblebees, where individuals can visit thousands of flowers daily that vary in nectar quality. While many animals, including bees, demonstrate reference-based evaluation in experimental contexts, it is unclear whether this occurs in the wild. Here, we asked how daily experience with wildflower nectar influenced wild bumblebees’ reward evaluation. We measured the daily nectar concentration of bee-visited wildflowers (Penstemon spp.), before presenting foragers with conspecific flowers filled with a range of artificial nectar concentrations. We recorded bees’ acceptance of artificial nectar, the probability of subsequent visits to flowers on the same plant, and residence time. While bees had a minimum threshold of nectar acceptability that was unaffected by experience, when there was higher-concentration environmental nectar, they were less likely to accept lower-quality rewards on manipulated plants. Bees also visited more flowers and stayed longer on plants with higher-concentration nectar. This study shows evidence for both absolute and reference-based evaluation in wild bees and points towards differences between bees’ behavior in lab- and wild-foraging contexts.","PeriodicalId":8840,"journal":{"name":"Behavioral Ecology","volume":"77 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/beheco/arad112","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Foraging theory assumes that animals assess value based on objective payoffs; however, animals often evaluate rewards comparatively, forming expectations based on recent experience. This form of evaluation may be particularly relevant for nectar foragers such as bumblebees, where individuals can visit thousands of flowers daily that vary in nectar quality. While many animals, including bees, demonstrate reference-based evaluation in experimental contexts, it is unclear whether this occurs in the wild. Here, we asked how daily experience with wildflower nectar influenced wild bumblebees’ reward evaluation. We measured the daily nectar concentration of bee-visited wildflowers (Penstemon spp.), before presenting foragers with conspecific flowers filled with a range of artificial nectar concentrations. We recorded bees’ acceptance of artificial nectar, the probability of subsequent visits to flowers on the same plant, and residence time. While bees had a minimum threshold of nectar acceptability that was unaffected by experience, when there was higher-concentration environmental nectar, they were less likely to accept lower-quality rewards on manipulated plants. Bees also visited more flowers and stayed longer on plants with higher-concentration nectar. This study shows evidence for both absolute and reference-based evaluation in wild bees and points towards differences between bees’ behavior in lab- and wild-foraging contexts.
期刊介绍:
Studies on the whole range of behaving organisms, including plants, invertebrates, vertebrates, and humans, are included.
Behavioral Ecology construes the field in its broadest sense to include 1) the use of ecological and evolutionary processes to explain the occurrence and adaptive significance of behavior patterns; 2) the use of behavioral processes to predict ecological patterns, and 3) empirical, comparative analyses relating behavior to the environment in which it occurs.