Boosting LiMn2O4 Diffusion Coefficients and Stability via Fe/Mg Doping and MWCNT Synergistically Modulating Microstructure

IF 3.9 Q2 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanotechnology Pub Date : 2024-01-05 DOI:10.1155/2024/7020995
Natasha Ross, S. Willenberg, Thando Juqu, E. Carleschi, Bryan P. Doyle
{"title":"Boosting LiMn2O4 Diffusion Coefficients and Stability via Fe/Mg Doping and MWCNT Synergistically Modulating Microstructure","authors":"Natasha Ross, S. Willenberg, Thando Juqu, E. Carleschi, Bryan P. Doyle","doi":"10.1155/2024/7020995","DOIUrl":null,"url":null,"abstract":"The dissolution of manganese and its deposition on the anode surface cause poor cycling stability in lithium-ion batteries. To alleviate these issues, this study probes the electrochemical activity of highly crystalline and cation-adjusted lithium manganese oxide (LMO) carbon spinel composite obtained via a modified sol-gel synthesis procedure. The pristine LMO cathode was functionalized with a Fe and Mg alloy and fused with purified multiwalled carbon nanotubes (MWCNTs) to form a catalytically stabilized LiMn1.98Fe0.01Mg0.01O4/MWCNT (LMO-FeMg/MWCNT) framework. High-resolution SEM analysis showed well-dispersed particles in the nanometer size range. The electrochemical characteristics of the novel composite materials yielded favourable electrochemical results with diffusion coefficients of 1.91 × 10−9 cm2·s−1 and 5.83 × 10−10 cm2·s−1 for LMO-FeMg and LMO-FeMg/MWCNT, respectively. This improvement was supported by impedance studies which showed a considerable Rct reduction of 0.27 Ω and 0.71 Ω. The cation stabilized system outperformed the pristine LMO material with specific capacities around 145 mAh·g−1, due to an enhancement in electrochemical activity and structural stability.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/7020995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The dissolution of manganese and its deposition on the anode surface cause poor cycling stability in lithium-ion batteries. To alleviate these issues, this study probes the electrochemical activity of highly crystalline and cation-adjusted lithium manganese oxide (LMO) carbon spinel composite obtained via a modified sol-gel synthesis procedure. The pristine LMO cathode was functionalized with a Fe and Mg alloy and fused with purified multiwalled carbon nanotubes (MWCNTs) to form a catalytically stabilized LiMn1.98Fe0.01Mg0.01O4/MWCNT (LMO-FeMg/MWCNT) framework. High-resolution SEM analysis showed well-dispersed particles in the nanometer size range. The electrochemical characteristics of the novel composite materials yielded favourable electrochemical results with diffusion coefficients of 1.91 × 10−9 cm2·s−1 and 5.83 × 10−10 cm2·s−1 for LMO-FeMg and LMO-FeMg/MWCNT, respectively. This improvement was supported by impedance studies which showed a considerable Rct reduction of 0.27 Ω and 0.71 Ω. The cation stabilized system outperformed the pristine LMO material with specific capacities around 145 mAh·g−1, due to an enhancement in electrochemical activity and structural stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过掺杂铁/镁和 MWCNT 协同调节微结构提高锰酸锂扩散系数和稳定性
锰的溶解及其在负极表面的沉积会导致锂离子电池循环稳定性差。为了缓解这些问题,本研究采用改良的溶胶-凝胶合成工艺,探究了高结晶性和阳离子调整型锂锰氧化物(LMO)碳尖晶石复合材料的电化学活性。原始 LMO 正极被铁和镁合金功能化,并与纯化的多壁碳纳米管(MWCNT)融合,形成催化稳定的锰酸锂 1.98Fe0.01Mg0.01O4/MWCNT (LMO-FeMg/MWCNT)框架。高分辨率 SEM 分析表明,颗粒在纳米级范围内分散良好。新型复合材料的电化学特性产生了良好的电化学结果,LMO-FeMg 和 LMO-FeMg/MWCNT 的扩散系数分别为 1.91 × 10-9 cm2-s-1 和 5.83 × 10-10 cm2-s-1。阻抗研究证实了这一改进,阻抗研究显示 Rct 显著降低了 0.27 Ω 和 0.71 Ω。由于电化学活性和结构稳定性的提高,阳离子稳定体系的比容量超过了原始 LMO 材料,约为 145 mAh-g-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanotechnology
Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
5.50
自引率
2.40%
发文量
25
审稿时长
13 weeks
期刊最新文献
Green Synthesis of Zinc Oxide Nanoparticles using extract of onion (Allium cepa) peel [Síntesis verde de nanopartículas de óxido de zinc utilizando extracto de cáscara de cebolla (Allium cepa)] New Insights on Biosynthesis of Nanoparticles Using Plants Emphasizing the Use of Alfalfa (Medicago sativa L.) Tunable High-Frequency Acoustoelectric Current Oscillations in Fluorine-Doped Single-Walled Carbon Nanotubes Enhancement of Optical Properties and Stability in CsPbBr3 Using CQD and TOP Doping for Solar Cell Applications Boosting LiMn2O4 Diffusion Coefficients and Stability via Fe/Mg Doping and MWCNT Synergistically Modulating Microstructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1