Boosting LiMn2O4 Diffusion Coefficients and Stability via Fe/Mg Doping and MWCNT Synergistically Modulating Microstructure

IF 3.9 Q2 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanotechnology Pub Date : 2024-01-05 DOI:10.1155/2024/7020995
Natasha Ross, S. Willenberg, Thando Juqu, E. Carleschi, Bryan P. Doyle
{"title":"Boosting LiMn2O4 Diffusion Coefficients and Stability via Fe/Mg Doping and MWCNT Synergistically Modulating Microstructure","authors":"Natasha Ross, S. Willenberg, Thando Juqu, E. Carleschi, Bryan P. Doyle","doi":"10.1155/2024/7020995","DOIUrl":null,"url":null,"abstract":"The dissolution of manganese and its deposition on the anode surface cause poor cycling stability in lithium-ion batteries. To alleviate these issues, this study probes the electrochemical activity of highly crystalline and cation-adjusted lithium manganese oxide (LMO) carbon spinel composite obtained via a modified sol-gel synthesis procedure. The pristine LMO cathode was functionalized with a Fe and Mg alloy and fused with purified multiwalled carbon nanotubes (MWCNTs) to form a catalytically stabilized LiMn1.98Fe0.01Mg0.01O4/MWCNT (LMO-FeMg/MWCNT) framework. High-resolution SEM analysis showed well-dispersed particles in the nanometer size range. The electrochemical characteristics of the novel composite materials yielded favourable electrochemical results with diffusion coefficients of 1.91 × 10−9 cm2·s−1 and 5.83 × 10−10 cm2·s−1 for LMO-FeMg and LMO-FeMg/MWCNT, respectively. This improvement was supported by impedance studies which showed a considerable Rct reduction of 0.27 Ω and 0.71 Ω. The cation stabilized system outperformed the pristine LMO material with specific capacities around 145 mAh·g−1, due to an enhancement in electrochemical activity and structural stability.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"51 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/7020995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The dissolution of manganese and its deposition on the anode surface cause poor cycling stability in lithium-ion batteries. To alleviate these issues, this study probes the electrochemical activity of highly crystalline and cation-adjusted lithium manganese oxide (LMO) carbon spinel composite obtained via a modified sol-gel synthesis procedure. The pristine LMO cathode was functionalized with a Fe and Mg alloy and fused with purified multiwalled carbon nanotubes (MWCNTs) to form a catalytically stabilized LiMn1.98Fe0.01Mg0.01O4/MWCNT (LMO-FeMg/MWCNT) framework. High-resolution SEM analysis showed well-dispersed particles in the nanometer size range. The electrochemical characteristics of the novel composite materials yielded favourable electrochemical results with diffusion coefficients of 1.91 × 10−9 cm2·s−1 and 5.83 × 10−10 cm2·s−1 for LMO-FeMg and LMO-FeMg/MWCNT, respectively. This improvement was supported by impedance studies which showed a considerable Rct reduction of 0.27 Ω and 0.71 Ω. The cation stabilized system outperformed the pristine LMO material with specific capacities around 145 mAh·g−1, due to an enhancement in electrochemical activity and structural stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过掺杂铁/镁和 MWCNT 协同调节微结构提高锰酸锂扩散系数和稳定性
锰的溶解及其在负极表面的沉积会导致锂离子电池循环稳定性差。为了缓解这些问题,本研究采用改良的溶胶-凝胶合成工艺,探究了高结晶性和阳离子调整型锂锰氧化物(LMO)碳尖晶石复合材料的电化学活性。原始 LMO 正极被铁和镁合金功能化,并与纯化的多壁碳纳米管(MWCNT)融合,形成催化稳定的锰酸锂 1.98Fe0.01Mg0.01O4/MWCNT (LMO-FeMg/MWCNT)框架。高分辨率 SEM 分析表明,颗粒在纳米级范围内分散良好。新型复合材料的电化学特性产生了良好的电化学结果,LMO-FeMg 和 LMO-FeMg/MWCNT 的扩散系数分别为 1.91 × 10-9 cm2-s-1 和 5.83 × 10-10 cm2-s-1。阻抗研究证实了这一改进,阻抗研究显示 Rct 显著降低了 0.27 Ω 和 0.71 Ω。由于电化学活性和结构稳定性的提高,阳离子稳定体系的比容量超过了原始 LMO 材料,约为 145 mAh-g-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanotechnology
Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
5.50
自引率
2.40%
发文量
25
审稿时长
13 weeks
期刊最新文献
Enhancement of Optical Properties and Stability in CsPbBr3 Using CQD and TOP Doping for Solar Cell Applications Boosting LiMn2O4 Diffusion Coefficients and Stability via Fe/Mg Doping and MWCNT Synergistically Modulating Microstructure Phytosynthesized Nanoparticles as Novel Antifungal Agent for Sustainable Agriculture: A Mechanistic Approach, Current Advances, and Future Directions Reduction of SO2 to Elemental Sulfur in Flue Gas Using Copper-Alumina Catalysts Unlocking the Potential of NiSO4·6H2O/NaOCl/NaOH Catalytic System: Insights into Nickel Peroxide as an Intermediate for Benzonitrile Synthesis in Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1