Power Loss Analysis of an Oil-Jet Lubricated Angular Contact Ball Bearing: Theoretical and Experimental Investigations

L. Darul, T. Touret, C. Changenet, Fabrice Ville
{"title":"Power Loss Analysis of an Oil-Jet Lubricated Angular Contact Ball Bearing: Theoretical and Experimental Investigations","authors":"L. Darul, T. Touret, C. Changenet, Fabrice Ville","doi":"10.3390/lubricants12010014","DOIUrl":null,"url":null,"abstract":"This study presents a theoretical and experimental analysis to quantify the power losses generated by an oil jet lubricated angular contact ball bearing. The analysis is conducted for a moderate speed range (N∙dm product less than 106) and a limited applied load (<5% of the static capacity). The lubrication regime of each ball is studied through a theoretical model and varies from Iso-Viscous Rigid to Elasto-Hydrodynamic. Therefore, the hydrodynamic effects are considered in the power loss calculation. An experimental campaign is carried out and the influence of several parameters (applied load, oil injection temperature, speed, etc.) is studied. A good agreement is found between the developed model and the measurements. It is shown that the radial applied load has no influence on power losses, unlike speed and axial load. This can be explained by the load distribution and the hydrodynamic rolling contribution on the low loaded balls.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/lubricants12010014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a theoretical and experimental analysis to quantify the power losses generated by an oil jet lubricated angular contact ball bearing. The analysis is conducted for a moderate speed range (N∙dm product less than 106) and a limited applied load (<5% of the static capacity). The lubrication regime of each ball is studied through a theoretical model and varies from Iso-Viscous Rigid to Elasto-Hydrodynamic. Therefore, the hydrodynamic effects are considered in the power loss calculation. An experimental campaign is carried out and the influence of several parameters (applied load, oil injection temperature, speed, etc.) is studied. A good agreement is found between the developed model and the measurements. It is shown that the radial applied load has no influence on power losses, unlike speed and axial load. This can be explained by the load distribution and the hydrodynamic rolling contribution on the low loaded balls.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
喷油润滑角接触球轴承的功率损耗分析:理论与实验研究
本研究通过理论和实验分析,对喷油润滑角接触球轴承产生的功率损失进行量化。分析针对中等速度范围(N∙dm 产品小于 106)和有限的外加载荷(小于静态容量的 5%)进行。通过理论模型对每个球的润滑机制进行了研究,研究范围从等粘性刚性到弹性流体动力。因此,在计算功率损失时考虑了流体动力效应。我们开展了一项实验活动,研究了几个参数(应用负载、注油温度、转速等)的影响。结果表明,所建立的模型与测量结果非常吻合。结果表明,与速度和轴向载荷不同,径向施加载荷对功率损耗没有影响。这可以用载荷分布和低载荷球的流体动力滚动作用来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Electroplastic-Assisted Grinding on Surface Quality of Ductile Iron Friction and Wear Mechanisms of Ti3SiC2/Cu Composites under the Synergistic Effect of Velocity–Load Field at 800 °C Tribological Properties of PEEK and Its Composite Material under Oil Lubrication Oxidation and Flammability Tests for Grape (Vitis vinifera L.) Seed Oil Molecular Dynamics Simulation and Experimental Study of Friction and Wear Characteristics of Carbon Nanotube-Reinforced Nitrile Butadiene Rubber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1