Ductile iron is a heterogeneous material. The presence of spherical graphite and a hard and brittle structure makes the surface of the workpiece easily form pits and crack defects under harsh grinding conditions, which seriously affects the service life and service performance of the workpiece. The new assisted grinding process based on the electroplastic effect is expected to avoid the surface defects of ductile iron. By comparing the surface roughness and microstructure of conventional grinding and electroplastic-assisted grinding, the superiority of electroplastic-assisted grinding surface quality is confirmed. Further discussion is presented on the impact of grinding parameters on the workpiece’s surface quality under the same electrical parameters. The results show that the sensitivity of surface roughness to grinding parameters from strong to weak is grinding wheel speed, feed speed and grinding depth. The optimal combination of grinding parameters is determined as a grinding wheel speed of 30 m/s, a feed speed of 0.5 m/min and a grinding depth of 10 μm.
{"title":"Effect of Electroplastic-Assisted Grinding on Surface Quality of Ductile Iron","authors":"Shuo Feng, Dongzhou Jia, Yanbin Zhang, Xiaoqiang Wu, Erkuo Guo, Rui Xue, Taiyan Gong, Haijun Yang, Xiaoxue Li, Xin Jiang","doi":"10.3390/lubricants12080266","DOIUrl":"https://doi.org/10.3390/lubricants12080266","url":null,"abstract":"Ductile iron is a heterogeneous material. The presence of spherical graphite and a hard and brittle structure makes the surface of the workpiece easily form pits and crack defects under harsh grinding conditions, which seriously affects the service life and service performance of the workpiece. The new assisted grinding process based on the electroplastic effect is expected to avoid the surface defects of ductile iron. By comparing the surface roughness and microstructure of conventional grinding and electroplastic-assisted grinding, the superiority of electroplastic-assisted grinding surface quality is confirmed. Further discussion is presented on the impact of grinding parameters on the workpiece’s surface quality under the same electrical parameters. The results show that the sensitivity of surface roughness to grinding parameters from strong to weak is grinding wheel speed, feed speed and grinding depth. The optimal combination of grinding parameters is determined as a grinding wheel speed of 30 m/s, a feed speed of 0.5 m/min and a grinding depth of 10 μm.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":"40 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141798740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.3390/lubricants12080265
Rui Zhang, Bo Lei, Biao Chen, Fuyan Liu
Ti3SiC2/Cu composites were prepared using spark plasma sintering technology, and the effect of the velocity–load bivariate on the tribological behaviors of the Ti3SiC2/Cu-45# steel tribo-pair at 800 °C was investigated. The physical change and frictional chemical reaction during the friction process were analyzed based on the morphology characterization and frictional interface phases. The related friction and wear mechanism model was established. The results showed that the influence of velocity and load on the tribological performance of the Ti3SiC2/Cu-45# steel tribo-pair was not monotonically linear. When both the velocity and load were large, the coordinated effect of the two led to a low friction coefficient (0.52). At 800 °C, the velocity mainly affected the exfoliation and re-formation of the oxide film on the wear surface of the Ti3SiC2/Cu-45# steel tribo-pair, while the load affected the extrusion and fragmentation of the oxide film on the wear surface of the tribo-pair. In the friction process, frictional oxidation was the main influencing factor for the formation of the oxide film. When the velocity and load were small, the main frictional oxide consisted of SiO2−x and a small amount of CuO. When the velocity reached 1 m/s and the load reached 3 N, the oxide film was partially broken down and flaked off, and the matrix of the Ti3SiC2/Cu composite was exposed and oxidized, at which time the oxide film was composed of SiO2−x, TiO2, CuO, and Fe2O3. Under the synergistic effect of the velocity–load–temperature field, the friction and wear mechanism of the Ti3SiC2/Cu-45# steel tribo-pair changed from abrasive wear to frictional oxidation wear with the increase in velocity and load.
{"title":"Friction and Wear Mechanisms of Ti3SiC2/Cu Composites under the Synergistic Effect of Velocity–Load Field at 800 °C","authors":"Rui Zhang, Bo Lei, Biao Chen, Fuyan Liu","doi":"10.3390/lubricants12080265","DOIUrl":"https://doi.org/10.3390/lubricants12080265","url":null,"abstract":"Ti3SiC2/Cu composites were prepared using spark plasma sintering technology, and the effect of the velocity–load bivariate on the tribological behaviors of the Ti3SiC2/Cu-45# steel tribo-pair at 800 °C was investigated. The physical change and frictional chemical reaction during the friction process were analyzed based on the morphology characterization and frictional interface phases. The related friction and wear mechanism model was established. The results showed that the influence of velocity and load on the tribological performance of the Ti3SiC2/Cu-45# steel tribo-pair was not monotonically linear. When both the velocity and load were large, the coordinated effect of the two led to a low friction coefficient (0.52). At 800 °C, the velocity mainly affected the exfoliation and re-formation of the oxide film on the wear surface of the Ti3SiC2/Cu-45# steel tribo-pair, while the load affected the extrusion and fragmentation of the oxide film on the wear surface of the tribo-pair. In the friction process, frictional oxidation was the main influencing factor for the formation of the oxide film. When the velocity and load were small, the main frictional oxide consisted of SiO2−x and a small amount of CuO. When the velocity reached 1 m/s and the load reached 3 N, the oxide film was partially broken down and flaked off, and the matrix of the Ti3SiC2/Cu composite was exposed and oxidized, at which time the oxide film was composed of SiO2−x, TiO2, CuO, and Fe2O3. Under the synergistic effect of the velocity–load–temperature field, the friction and wear mechanism of the Ti3SiC2/Cu-45# steel tribo-pair changed from abrasive wear to frictional oxidation wear with the increase in velocity and load.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141807107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.3390/lubricants12080263
L. Șolea, R. Crețu
In this work, studies were performed on oxidative stability by determining the transmittance spectra, the components and trichomatic coordinates, and the color differences for grape seed oils (GSO) subjected to a forced oxidation treatment at temperatures of 100 °C and 120 °C, for 4, 8 and 10 h. For this purpose, a constant airflow of 30 L/min was used. GSO was also subjected to flammability tests on a heated cylindrical surface to determine the lowest temperature at which this oil ignites, correlated with the highest temperature at which the oil does not ignite. According to the results, these temperatures are 475 °C and 470 °C, respectively. At these temperatures, the tested oils were darker in color than the reference oil, with the L* parameter having lower values (91.53 and 89.56, respectively). In addition, the correlation coefficients between the evaluated parameters were significant (p ≤ 0.05).
在这项工作中,通过测定葡萄籽油(GSO)在 100 °C 和 120 °C 温度下强制氧化处理 4、8 和 10 小时后的透射光谱、组分和三色坐标以及色差,对其氧化稳定性进行了研究。为此,使用了 30 升/分钟的恒定气流。此外,还在一个加热的圆柱形表面上对 GSO 进行了可燃性测试,以确定这种油品点燃的最低温度和不点燃的最高温度。结果显示,这两个温度分别为 475 °C 和 470 °C。在这些温度下,测试油的颜色比参照油更深,L*参数值也更低(分别为 91.53 和 89.56)。此外,评估参数之间的相关系数显著(p ≤ 0.05)。
{"title":"Oxidation and Flammability Tests for Grape (Vitis vinifera L.) Seed Oil","authors":"L. Șolea, R. Crețu","doi":"10.3390/lubricants12080263","DOIUrl":"https://doi.org/10.3390/lubricants12080263","url":null,"abstract":"In this work, studies were performed on oxidative stability by determining the transmittance spectra, the components and trichomatic coordinates, and the color differences for grape seed oils (GSO) subjected to a forced oxidation treatment at temperatures of 100 °C and 120 °C, for 4, 8 and 10 h. For this purpose, a constant airflow of 30 L/min was used. GSO was also subjected to flammability tests on a heated cylindrical surface to determine the lowest temperature at which this oil ignites, correlated with the highest temperature at which the oil does not ignite. According to the results, these temperatures are 475 °C and 470 °C, respectively. At these temperatures, the tested oils were darker in color than the reference oil, with the L* parameter having lower values (91.53 and 89.56, respectively). In addition, the correlation coefficients between the evaluated parameters were significant (p ≤ 0.05).","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":"32 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141813766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.3390/lubricants12080264
Ying Li, Ziyang Wang, Xueshi Cui, Xuanxuan Han, Jin Zhang
PEEK (Poly Ether Ether Ketone) is a high-performance thermoplastic polymer with excellent mechanical, thermal and chemical stability. PEEK has good performance, and is widely used in hydraulic motors. However, there are few studies on the friction and wear properties of materials under the condition of oil lubrication with wide application. The modification of PEEK and the expansion of its application have become a hot research topic in the industry. This study focuses on the modification of the design of PEEK and explores the friction and wear characteristics of self-lubricating materials under different modification schemes. Friction and wear samples were prepared using PEEK-modification pelletizing and injection-molding processes, followed by fixed-condition friction and wear tests. The tribological mechanisms and wear properties of the materials under different modification schemes were analyzed, leading to the identification of several sets of improved reinforced materials. Experimental results demonstrate that modified materials can enhance surface tribological performance, with the best modification effect observed at an SCF filling rate of 15%. The modified PEEK material can better meet the requirements of specific applications, such as high-temperature environments, chemically aggressive environments, or applications requiring high strength and wear resistance.
{"title":"Tribological Properties of PEEK and Its Composite Material under Oil Lubrication","authors":"Ying Li, Ziyang Wang, Xueshi Cui, Xuanxuan Han, Jin Zhang","doi":"10.3390/lubricants12080264","DOIUrl":"https://doi.org/10.3390/lubricants12080264","url":null,"abstract":"PEEK (Poly Ether Ether Ketone) is a high-performance thermoplastic polymer with excellent mechanical, thermal and chemical stability. PEEK has good performance, and is widely used in hydraulic motors. However, there are few studies on the friction and wear properties of materials under the condition of oil lubrication with wide application. The modification of PEEK and the expansion of its application have become a hot research topic in the industry. This study focuses on the modification of the design of PEEK and explores the friction and wear characteristics of self-lubricating materials under different modification schemes. Friction and wear samples were prepared using PEEK-modification pelletizing and injection-molding processes, followed by fixed-condition friction and wear tests. The tribological mechanisms and wear properties of the materials under different modification schemes were analyzed, leading to the identification of several sets of improved reinforced materials. Experimental results demonstrate that modified materials can enhance surface tribological performance, with the best modification effect observed at an SCF filling rate of 15%. The modified PEEK material can better meet the requirements of specific applications, such as high-temperature environments, chemically aggressive environments, or applications requiring high strength and wear resistance.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":"128 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141811579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.3390/lubricants12070261
Ce Liang, Changgeng Shuai, Xin Wang
Nitrile butadiene rubber (NBR) and its various composite materials are widely employed as friction materials in mechanical equipment. The use of carbon nanotube (CNT) reinforcement in NBR for improved friction and wear characteristics has become a major research focus. However, the mechanisms underlying the improvement in the friction and wear characteristics of NBR with different CNT contents remain insufficiently elucidated. Therefore, we conducted a combined analysis of NBR reinforced with varying CNT contents through molecular dynamics (MD) simulations and ring–block friction experiments. The aim is to analyze the extent to which CNTs enhance the water-lubricated friction and dry wear properties of NBR and explore the improvement mechanisms through molecular chain characteristics. The results of this study demonstrate that as the mass fraction of CNTs (0%, 1.25%, 2.5%, 5%) increases, the water-lubricated friction coefficient of NBR continuously decreases. Under water-lubricated conditions, CNTs improve the water storage capacity of the NBR surface and enhance lubrication efficiency. In the dry wear state, CNTs help reduce scratch depth and dry wear volume.
{"title":"Molecular Dynamics Simulation and Experimental Study of Friction and Wear Characteristics of Carbon Nanotube-Reinforced Nitrile Butadiene Rubber","authors":"Ce Liang, Changgeng Shuai, Xin Wang","doi":"10.3390/lubricants12070261","DOIUrl":"https://doi.org/10.3390/lubricants12070261","url":null,"abstract":"Nitrile butadiene rubber (NBR) and its various composite materials are widely employed as friction materials in mechanical equipment. The use of carbon nanotube (CNT) reinforcement in NBR for improved friction and wear characteristics has become a major research focus. However, the mechanisms underlying the improvement in the friction and wear characteristics of NBR with different CNT contents remain insufficiently elucidated. Therefore, we conducted a combined analysis of NBR reinforced with varying CNT contents through molecular dynamics (MD) simulations and ring–block friction experiments. The aim is to analyze the extent to which CNTs enhance the water-lubricated friction and dry wear properties of NBR and explore the improvement mechanisms through molecular chain characteristics. The results of this study demonstrate that as the mass fraction of CNTs (0%, 1.25%, 2.5%, 5%) increases, the water-lubricated friction coefficient of NBR continuously decreases. Under water-lubricated conditions, CNTs improve the water storage capacity of the NBR surface and enhance lubrication efficiency. In the dry wear state, CNTs help reduce scratch depth and dry wear volume.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":"30 45","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141814018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.3390/lubricants12070262
Chaozhe Jin, Changlin Li, Jia-min Du
Gas foil bearings have important and wide applications in high-speed turbomachinery, generating low frictional lubricating gas film in series with underlying elastic foil structures to support the rotor system. Their dynamic performance is of vital significance in maintaining the rotor stability as well as in depressing rotor vibrations. This paper conducts a comprehensive review on dynamic performance studies conducted on gas foil bearings, including research on the dynamic stiffness and damping coefficients, bearing stability, nonlinear vibrations of the rotor–bearing system, and active methods for controlling rotor dynamic motions. This review provides clear observations towards the developments and iterations of the models, methods, and experiments of these studies.
{"title":"A Review on the Dynamic Performance Studies of Gas Foil Bearings","authors":"Chaozhe Jin, Changlin Li, Jia-min Du","doi":"10.3390/lubricants12070262","DOIUrl":"https://doi.org/10.3390/lubricants12070262","url":null,"abstract":"Gas foil bearings have important and wide applications in high-speed turbomachinery, generating low frictional lubricating gas film in series with underlying elastic foil structures to support the rotor system. Their dynamic performance is of vital significance in maintaining the rotor stability as well as in depressing rotor vibrations. This paper conducts a comprehensive review on dynamic performance studies conducted on gas foil bearings, including research on the dynamic stiffness and damping coefficients, bearing stability, nonlinear vibrations of the rotor–bearing system, and active methods for controlling rotor dynamic motions. This review provides clear observations towards the developments and iterations of the models, methods, and experiments of these studies.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":"29 25","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141814033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-21DOI: 10.3390/lubricants12070259
Nicolai Sprogies, T. Lohner, K. Stahl
Resource and energy efficiency are of high importance in gearbox applications. To reduce friction and wear, an external lubricant supply like dip or injection lubrication is used to lubricate tribosystems in machine elements. This leads to the need for large lubricant volumes and elaborate sealing requirements. One potential method of minimizing the amount of lubricant and simplifying sealing in gearboxes is the self-lubrication of tribosystems using oil-impregnation of porous materials. Although well established in low-loaded journal bearings, self-lubrication of rolling-sliding contacts in gears is poorly understood. This study presents the self-lubrication method using oil-impregnated porous sinter material variants. For this, the tribosystem of gear contacts is transferred to model contacts, which are analyzed for friction and temperature behavior using a twin-disk tribometer. High-resolution surface images are used to record the surface changes. The test results show a significant increase in self-lubrication functionality of tribosystems by oil-impregnated porous sinter material and a tribo-performance comparable to injection-lubricated tribosystems of a sinter material with additionally solid lubricant added to the sinter material powder before sintering. Furthermore, the analyses highlight a significant influence of the surface finish, and in particular the surface porosity, on the overall tribosystem behavior through significantly improved friction and wear behavior transferable to gear applications.
{"title":"Improved Operating Behavior of Self-Lubricating Rolling-Sliding Contacts under High Load with Oil-Impregnated Porous Sinter Material","authors":"Nicolai Sprogies, T. Lohner, K. Stahl","doi":"10.3390/lubricants12070259","DOIUrl":"https://doi.org/10.3390/lubricants12070259","url":null,"abstract":"Resource and energy efficiency are of high importance in gearbox applications. To reduce friction and wear, an external lubricant supply like dip or injection lubrication is used to lubricate tribosystems in machine elements. This leads to the need for large lubricant volumes and elaborate sealing requirements. One potential method of minimizing the amount of lubricant and simplifying sealing in gearboxes is the self-lubrication of tribosystems using oil-impregnation of porous materials. Although well established in low-loaded journal bearings, self-lubrication of rolling-sliding contacts in gears is poorly understood. This study presents the self-lubrication method using oil-impregnated porous sinter material variants. For this, the tribosystem of gear contacts is transferred to model contacts, which are analyzed for friction and temperature behavior using a twin-disk tribometer. High-resolution surface images are used to record the surface changes. The test results show a significant increase in self-lubrication functionality of tribosystems by oil-impregnated porous sinter material and a tribo-performance comparable to injection-lubricated tribosystems of a sinter material with additionally solid lubricant added to the sinter material powder before sintering. Furthermore, the analyses highlight a significant influence of the surface finish, and in particular the surface porosity, on the overall tribosystem behavior through significantly improved friction and wear behavior transferable to gear applications.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":"43 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141818022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-21DOI: 10.3390/lubricants12070260
M. Ovsik, M. Bednarik, M. Řezníček, Michal Stanek
This work is concerned with forming, specifically deep drawing, and its influence on the micro-mechanical properties of sheet metal. In practice, there are several applications in which fractions can occur due to weak spots in the deep-drawn sheet metal, especially after long-term use. The deep drawing process was carried out on BUP–600 machines using the LHD (Limiting Dome Height) method, which uses a forming tool with a diameter of 100 mm and bead groove. Sheet metals X8CrMnNi19-6-3 (1.4376) with thicknesses of 1, 1.5, and 3 mm were selected for this process. To study the effect of a lubricant on the formability of the sheet metal, deep drawing without and with a lubricant was compared. An FEM analysis was conducted to identify critical points in the deep drawing process, and the results were later compared with real results. The analysis was conducted using the AutoForm program. The micro-mechanical properties of these points were subsequently examined. The specified points on the formed part showed significant differences in their micro-mechanical properties, suggesting a higher strength but also less resistance to fractures. The difference in micro-mechanical properties (indentation and Vickers hardness) in points that were not deep-drawn and points located in critical areas was up to 86%. Significant changes in behavior were found in the indentation modulus and plastic/elastic deformation work as well. This study demonstrates the significant effect of the use of a lubricant in achieving the deep drawing of the sheet metal. The application of a lubricant resulted in a 33% increase in drawing range compared to drawing without lubrication. This study has a significant influence on the deep drawing of sheet metals in practice, showing the fundamental influence of the lubricant on the drawing process and also showing the problem of critical points that need to be eliminated.
{"title":"Sheet Forming via Limiting Dome Height (LDH) Test: Influence of the Application of Lubricants, Location and Sheet Thickness on the Micro-Mechanical Properties of X8CrMnNi19-6-3","authors":"M. Ovsik, M. Bednarik, M. Řezníček, Michal Stanek","doi":"10.3390/lubricants12070260","DOIUrl":"https://doi.org/10.3390/lubricants12070260","url":null,"abstract":"This work is concerned with forming, specifically deep drawing, and its influence on the micro-mechanical properties of sheet metal. In practice, there are several applications in which fractions can occur due to weak spots in the deep-drawn sheet metal, especially after long-term use. The deep drawing process was carried out on BUP–600 machines using the LHD (Limiting Dome Height) method, which uses a forming tool with a diameter of 100 mm and bead groove. Sheet metals X8CrMnNi19-6-3 (1.4376) with thicknesses of 1, 1.5, and 3 mm were selected for this process. To study the effect of a lubricant on the formability of the sheet metal, deep drawing without and with a lubricant was compared. An FEM analysis was conducted to identify critical points in the deep drawing process, and the results were later compared with real results. The analysis was conducted using the AutoForm program. The micro-mechanical properties of these points were subsequently examined. The specified points on the formed part showed significant differences in their micro-mechanical properties, suggesting a higher strength but also less resistance to fractures. The difference in micro-mechanical properties (indentation and Vickers hardness) in points that were not deep-drawn and points located in critical areas was up to 86%. Significant changes in behavior were found in the indentation modulus and plastic/elastic deformation work as well. This study demonstrates the significant effect of the use of a lubricant in achieving the deep drawing of the sheet metal. The application of a lubricant resulted in a 33% increase in drawing range compared to drawing without lubrication. This study has a significant influence on the deep drawing of sheet metals in practice, showing the fundamental influence of the lubricant on the drawing process and also showing the problem of critical points that need to be eliminated.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141818251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Based on the cohesive zone model (CZM), a finite element model of the film–substrate bearing system in the rolling–sliding contact state is established. Through analyzing the normal and tangential bearing states of the film–substrate system, the effects of the sliding–rolling ratio and the film–substrate adhesion strength on the interfacial stress and the interfacial energy release rate of the film–substrate system are studied. The results show that there is an almost symmetric stress distribution at both sides of the contact zone in rolling contact. In rolling–sliding contact, obvious shear flow along the rolling–sliding direction occurs at the front edge of the contact zone, which results in a significant increase in the shear stress at the interface at the front edge of the contact zone, increasing the risk of interface damage and delamination failure. Meanwhile, the shear flow causes a normal tensile stress concentration along the film surface behind the contact zone, which very easily causes the emergence and expansion of the film surface cracks. In addition, there is a clear positive correlation between the adhesion strength and the load-bearing capacity of the film–substrate interface. The tangential delamination damage mainly occurs at the interface regardless of the rolling or rolling–sliding contact state.
{"title":"Finite Element Analysis of Damage Evolution of Solid Lubrication Film in Rolling–Sliding Contact","authors":"Peng Lv, Changling Tian, Yujun Xue, Yongjian Yu, Haichao Cai, Yanjing Yin","doi":"10.3390/lubricants12070258","DOIUrl":"https://doi.org/10.3390/lubricants12070258","url":null,"abstract":"Based on the cohesive zone model (CZM), a finite element model of the film–substrate bearing system in the rolling–sliding contact state is established. Through analyzing the normal and tangential bearing states of the film–substrate system, the effects of the sliding–rolling ratio and the film–substrate adhesion strength on the interfacial stress and the interfacial energy release rate of the film–substrate system are studied. The results show that there is an almost symmetric stress distribution at both sides of the contact zone in rolling contact. In rolling–sliding contact, obvious shear flow along the rolling–sliding direction occurs at the front edge of the contact zone, which results in a significant increase in the shear stress at the interface at the front edge of the contact zone, increasing the risk of interface damage and delamination failure. Meanwhile, the shear flow causes a normal tensile stress concentration along the film surface behind the contact zone, which very easily causes the emergence and expansion of the film surface cracks. In addition, there is a clear positive correlation between the adhesion strength and the load-bearing capacity of the film–substrate interface. The tangential delamination damage mainly occurs at the interface regardless of the rolling or rolling–sliding contact state.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":" 47","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141824177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.3390/lubricants12070257
Hang Dou, Tao Jiang, Longgui He, Shuo Cheng, Xiaoliang Fang, Jimin Xu
The development of reusable liquid rocket turbopumps has gradually highlighted the disadvantages of rolling bearings, particularly the contradiction between long service life and high rotational speed. It is critical to explore a feasible bearing scheme offering a long wear life and high stability to replace the existing rolling bearings. In this study, liquid nitrogen is adopted to simulate the ultra-low temperature environment of liquid rocket turbopumps, and theoretical evaluations of the lubrication performance of thrust-type foil bearings in liquid nitrogen are conducted. A link-spring model for the bump foil structure and a thin-plate finite element model for the top foil structure are established. The static and dynamic characteristics of the bearings are analyzed using methods including the finite difference method, the Newton–Raphson iteration method, and the finite element method. Detailed analysis includes the effects of factors such as rotational speed, fluid film thickness, thrust disk tilt angle, and the friction coefficient of the bump foil interface on the static and dynamic characteristics of thrust-type foil bearings. The research results indicate that thrust-type foil bearings have a good load-carrying capacity and low frictional power consumption. The adaptive deformation of the foil structure increases the fluid film thickness, preventing dry friction due to direct contact between the rotor journal and the bearing surface. When faced with thrust disk tilt, the direct translational stiffness and damping coefficient of the bearing do not undergo significant changes, ensuring system stability. Based on the results of this study, the exceptional performance characteristics of thrust-type foil bearings make them a promising alternative to rolling bearings for the development of reusable liquid rocket turbopumps.
{"title":"Theoretical Evaluation of Lubrication Performance of Thrust-Type Foil Bearings in Liquid Nitrogen","authors":"Hang Dou, Tao Jiang, Longgui He, Shuo Cheng, Xiaoliang Fang, Jimin Xu","doi":"10.3390/lubricants12070257","DOIUrl":"https://doi.org/10.3390/lubricants12070257","url":null,"abstract":"The development of reusable liquid rocket turbopumps has gradually highlighted the disadvantages of rolling bearings, particularly the contradiction between long service life and high rotational speed. It is critical to explore a feasible bearing scheme offering a long wear life and high stability to replace the existing rolling bearings. In this study, liquid nitrogen is adopted to simulate the ultra-low temperature environment of liquid rocket turbopumps, and theoretical evaluations of the lubrication performance of thrust-type foil bearings in liquid nitrogen are conducted. A link-spring model for the bump foil structure and a thin-plate finite element model for the top foil structure are established. The static and dynamic characteristics of the bearings are analyzed using methods including the finite difference method, the Newton–Raphson iteration method, and the finite element method. Detailed analysis includes the effects of factors such as rotational speed, fluid film thickness, thrust disk tilt angle, and the friction coefficient of the bump foil interface on the static and dynamic characteristics of thrust-type foil bearings. The research results indicate that thrust-type foil bearings have a good load-carrying capacity and low frictional power consumption. The adaptive deformation of the foil structure increases the fluid film thickness, preventing dry friction due to direct contact between the rotor journal and the bearing surface. When faced with thrust disk tilt, the direct translational stiffness and damping coefficient of the bearing do not undergo significant changes, ensuring system stability. Based on the results of this study, the exceptional performance characteristics of thrust-type foil bearings make them a promising alternative to rolling bearings for the development of reusable liquid rocket turbopumps.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":" 34","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141831361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}