{"title":"Friction and Wear Mechanisms of Ti3SiC2/Cu Composites under the Synergistic Effect of Velocity–Load Field at 800 °C","authors":"Rui Zhang, Bo Lei, Biao Chen, Fuyan Liu","doi":"10.3390/lubricants12080265","DOIUrl":null,"url":null,"abstract":"Ti3SiC2/Cu composites were prepared using spark plasma sintering technology, and the effect of the velocity–load bivariate on the tribological behaviors of the Ti3SiC2/Cu-45# steel tribo-pair at 800 °C was investigated. The physical change and frictional chemical reaction during the friction process were analyzed based on the morphology characterization and frictional interface phases. The related friction and wear mechanism model was established. The results showed that the influence of velocity and load on the tribological performance of the Ti3SiC2/Cu-45# steel tribo-pair was not monotonically linear. When both the velocity and load were large, the coordinated effect of the two led to a low friction coefficient (0.52). At 800 °C, the velocity mainly affected the exfoliation and re-formation of the oxide film on the wear surface of the Ti3SiC2/Cu-45# steel tribo-pair, while the load affected the extrusion and fragmentation of the oxide film on the wear surface of the tribo-pair. In the friction process, frictional oxidation was the main influencing factor for the formation of the oxide film. When the velocity and load were small, the main frictional oxide consisted of SiO2−x and a small amount of CuO. When the velocity reached 1 m/s and the load reached 3 N, the oxide film was partially broken down and flaked off, and the matrix of the Ti3SiC2/Cu composite was exposed and oxidized, at which time the oxide film was composed of SiO2−x, TiO2, CuO, and Fe2O3. Under the synergistic effect of the velocity–load–temperature field, the friction and wear mechanism of the Ti3SiC2/Cu-45# steel tribo-pair changed from abrasive wear to frictional oxidation wear with the increase in velocity and load.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/lubricants12080265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ti3SiC2/Cu composites were prepared using spark plasma sintering technology, and the effect of the velocity–load bivariate on the tribological behaviors of the Ti3SiC2/Cu-45# steel tribo-pair at 800 °C was investigated. The physical change and frictional chemical reaction during the friction process were analyzed based on the morphology characterization and frictional interface phases. The related friction and wear mechanism model was established. The results showed that the influence of velocity and load on the tribological performance of the Ti3SiC2/Cu-45# steel tribo-pair was not monotonically linear. When both the velocity and load were large, the coordinated effect of the two led to a low friction coefficient (0.52). At 800 °C, the velocity mainly affected the exfoliation and re-formation of the oxide film on the wear surface of the Ti3SiC2/Cu-45# steel tribo-pair, while the load affected the extrusion and fragmentation of the oxide film on the wear surface of the tribo-pair. In the friction process, frictional oxidation was the main influencing factor for the formation of the oxide film. When the velocity and load were small, the main frictional oxide consisted of SiO2−x and a small amount of CuO. When the velocity reached 1 m/s and the load reached 3 N, the oxide film was partially broken down and flaked off, and the matrix of the Ti3SiC2/Cu composite was exposed and oxidized, at which time the oxide film was composed of SiO2−x, TiO2, CuO, and Fe2O3. Under the synergistic effect of the velocity–load–temperature field, the friction and wear mechanism of the Ti3SiC2/Cu-45# steel tribo-pair changed from abrasive wear to frictional oxidation wear with the increase in velocity and load.