Joaquín H. Palma , Marcos Bertuola , Élida B. Hermida
{"title":"Modeling calcium diffusion and crosslinking dynamics in a thermogelling Alginate-Gelatin-Hyaluronic acid ink: 3D bioprinting applications","authors":"Joaquín H. Palma , Marcos Bertuola , Élida B. Hermida","doi":"10.1016/j.bprint.2024.e00329","DOIUrl":null,"url":null,"abstract":"<div><p><span>Alginate-based inks are widely used in 3D bioprinting. Its crosslinking by Ca</span><sup>2+</sup><span> ions is extremely important to achieve scaffolds with optimal mechanical properties. Notably, despite previous studies on calcium diffusion in alginate systems, there have been no reported data regarding the effect of temperature on the diffusion and crosslinking dynamics of thermogelling alginate-based hydrogels. This study focuses on investigating the kinetics of the crosslinking front and Ca</span><sup>2+</sup> diffusion within a matrix of Alginate-Gelatin-Hyaluronic acid ink, exploring the impact of temperature and Ca<sup>2+</sup> concentration. The Ca<sup>2+</sup><span> diffusion rate or ink crosslinking rate increase as the crosslinker concentration and ink temperature increase. Additionally, the mechanical properties of the scaffolds, assessed through compression, tension, and dynamic tests, were correlated with the crosslinking time.</span></p><p>The innovative aspect of this study lies in the development of a code that simulates the diffusion of Ca<sup>2+</sup><span> ions from the exterior to the interior of a hydrogel structure. Specifically, the code facilitates the calculation of the crosslinking time for a cylindrical structure<span><span> up to a specified thickness, providing valuable insights for the production of airways or blood vessels. Furthermore, the Python script, incorporating the numerical model, manages to simulate the crosslinking dynamics of scaffolds of any shape, and properly fits the rheological measurements of dynamic moduli during the crosslinking process. This represents a significant advance for the precise and controlled </span>scaffold fabrication process using 3D bioprinting.</span></span></p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"38 ","pages":"Article e00329"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886624000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Alginate-based inks are widely used in 3D bioprinting. Its crosslinking by Ca2+ ions is extremely important to achieve scaffolds with optimal mechanical properties. Notably, despite previous studies on calcium diffusion in alginate systems, there have been no reported data regarding the effect of temperature on the diffusion and crosslinking dynamics of thermogelling alginate-based hydrogels. This study focuses on investigating the kinetics of the crosslinking front and Ca2+ diffusion within a matrix of Alginate-Gelatin-Hyaluronic acid ink, exploring the impact of temperature and Ca2+ concentration. The Ca2+ diffusion rate or ink crosslinking rate increase as the crosslinker concentration and ink temperature increase. Additionally, the mechanical properties of the scaffolds, assessed through compression, tension, and dynamic tests, were correlated with the crosslinking time.
The innovative aspect of this study lies in the development of a code that simulates the diffusion of Ca2+ ions from the exterior to the interior of a hydrogel structure. Specifically, the code facilitates the calculation of the crosslinking time for a cylindrical structure up to a specified thickness, providing valuable insights for the production of airways or blood vessels. Furthermore, the Python script, incorporating the numerical model, manages to simulate the crosslinking dynamics of scaffolds of any shape, and properly fits the rheological measurements of dynamic moduli during the crosslinking process. This represents a significant advance for the precise and controlled scaffold fabrication process using 3D bioprinting.
期刊介绍:
Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.