DiffMat: Latent diffusion models for image-guided material generation

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Visual Informatics Pub Date : 2024-03-01 DOI:10.1016/j.visinf.2023.12.001
Liang Yuan , Dingkun Yan , Suguru Saito , Issei Fujishiro
{"title":"DiffMat: Latent diffusion models for image-guided material generation","authors":"Liang Yuan ,&nbsp;Dingkun Yan ,&nbsp;Suguru Saito ,&nbsp;Issei Fujishiro","doi":"10.1016/j.visinf.2023.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>Creating realistic materials is essential in the construction of immersive virtual environments. While existing techniques for material capture and conditional generation rely on flash-lit photos, they often produce artifacts when the illumination mismatches the training data. In this study, we introduce DiffMat, a novel diffusion model that integrates the CLIP image encoder and a multi-layer, cross-attention denoising backbone to generate latent materials from images under various illuminations. Using a pre-trained StyleGAN-based material generator, our method converts these latent materials into high-resolution SVBRDF textures, a process that enables a seamless fit into the standard physically based rendering pipeline, reducing the requirements for vast computational resources and expansive datasets. DiffMat surpasses existing generative methods in terms of material quality and variety, and shows adaptability to a broader spectrum of lighting conditions in reference images.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"8 1","pages":"Pages 6-14"},"PeriodicalIF":3.8000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X24000019/pdfft?md5=fb0200304a9b292debbf18a3162d10e8&pid=1-s2.0-S2468502X24000019-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X24000019","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Creating realistic materials is essential in the construction of immersive virtual environments. While existing techniques for material capture and conditional generation rely on flash-lit photos, they often produce artifacts when the illumination mismatches the training data. In this study, we introduce DiffMat, a novel diffusion model that integrates the CLIP image encoder and a multi-layer, cross-attention denoising backbone to generate latent materials from images under various illuminations. Using a pre-trained StyleGAN-based material generator, our method converts these latent materials into high-resolution SVBRDF textures, a process that enables a seamless fit into the standard physically based rendering pipeline, reducing the requirements for vast computational resources and expansive datasets. DiffMat surpasses existing generative methods in terms of material quality and variety, and shows adaptability to a broader spectrum of lighting conditions in reference images.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DiffMat:用于图像引导材料生成的潜在扩散模型
创建逼真的材料对于构建身临其境的虚拟环境至关重要。虽然现有的材料捕捉和条件生成技术依赖于闪光灯照亮的照片,但当光照与训练数据不匹配时,这些技术往往会产生伪影。在这项研究中,我们引入了 DiffMat,这是一种新型扩散模型,它集成了 CLIP 图像编码器和多层交叉注意力去噪骨干,可从各种光照下的图像生成潜在材料。我们的方法使用预先训练好的基于 StyleGAN 的材料生成器,将这些潜在材料转换为高分辨率 SVBRDF 纹理,这一过程可无缝融入基于物理的标准渲染管道,从而降低对大量计算资源和庞大数据集的要求。DiffMat 在材质质量和多样性方面超越了现有的生成方法,并能适应参考图像中更广泛的光照条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
期刊最新文献
Intelligent CAD 2.0 Editorial Board RelicCARD: Enhancing cultural relics exploration through semantics-based augmented reality tangible interaction design JobViz: Skill-driven visual exploration of job advertisements Visual evaluation of graph representation learning based on the presentation of community structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1