{"title":"Estimation of Reservoir Fracture Properties from Seismic Data Using Markov Chain Monte Carlo Methods","authors":"","doi":"10.1007/s11004-023-10129-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The knowledge of fracture properties and its geometrical patterns is often required for the analysis of mechanical and flow properties in fractured reservoirs, as fracture characterization plays a critical role in the optimization of hydrocarbon production or estimation of storage capacity of subsurface reservoirs. A stochastic method based on a Markov chain Monte Carlo (MCMC) algorithm is proposed to estimate fracture properties using a rock physics model for fractured rocks. Two implementations are presented: a Metropolis algorithm based on a Gaussian prior distribution and an extended Metropolis algorithm with an informative prior obtained from multiple-point statistics simulations. The results are compared to a Bayesian analytical approach where the solution is based on a linearized approximation of the rock physics model. The novelty of the proposed approach is the use of a training image, that is, a conceptual geological model, to account for the spatial distribution of the fractures. Two fracture properties are considered, namely fracture density and aspect ratio, and the spatial distribution and geometrical characteristics of fractures are also investigated to understand the connectivity patterns that control fluid flow. The MCMC approach with a training image is more computationally demanding but provides geometrical models of the spatial distribution of fractures. The inversion results show that the prediction accuracy of fracture density and aspect ratio obtained by the MCMC methods is similar to the one obtained with the analytical approach, and that the MCMC methods provide a reliable assessment of the posterior uncertainty as well.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11004-023-10129-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The knowledge of fracture properties and its geometrical patterns is often required for the analysis of mechanical and flow properties in fractured reservoirs, as fracture characterization plays a critical role in the optimization of hydrocarbon production or estimation of storage capacity of subsurface reservoirs. A stochastic method based on a Markov chain Monte Carlo (MCMC) algorithm is proposed to estimate fracture properties using a rock physics model for fractured rocks. Two implementations are presented: a Metropolis algorithm based on a Gaussian prior distribution and an extended Metropolis algorithm with an informative prior obtained from multiple-point statistics simulations. The results are compared to a Bayesian analytical approach where the solution is based on a linearized approximation of the rock physics model. The novelty of the proposed approach is the use of a training image, that is, a conceptual geological model, to account for the spatial distribution of the fractures. Two fracture properties are considered, namely fracture density and aspect ratio, and the spatial distribution and geometrical characteristics of fractures are also investigated to understand the connectivity patterns that control fluid flow. The MCMC approach with a training image is more computationally demanding but provides geometrical models of the spatial distribution of fractures. The inversion results show that the prediction accuracy of fracture density and aspect ratio obtained by the MCMC methods is similar to the one obtained with the analytical approach, and that the MCMC methods provide a reliable assessment of the posterior uncertainty as well.