Xiaojuan Lin, Mingyi Xu, Yun Zhao, Feng Ji, Yao Liu, Suting Wang, Meng Chen, Wenqiang Zhang, Zexin Tao, Aiqiang Xu
{"title":"Environmental Surveillance of Human Astroviruses in Jinan City of China, 2020–2021","authors":"Xiaojuan Lin, Mingyi Xu, Yun Zhao, Feng Ji, Yao Liu, Suting Wang, Meng Chen, Wenqiang Zhang, Zexin Tao, Aiqiang Xu","doi":"10.1007/s12560-023-09576-x","DOIUrl":null,"url":null,"abstract":"<div><p>Human astroviruses (HAstVs) are a significant etiological agent of acute gastroenteritis in children. In order to investigate the circulation of HAstVs during the COVID-19 pandemic, a 2-year environmental surveillance was conducted in Jinan between 2020 and 2021. A total of 24 sewage samples were collected and concentrated. Real-time PCR indicated a positive rate of 83.3%, 79.2% (19/24), and 62.5% for classic, MLB, and VA types of HAstV in sewage samples, respectively, with genomic copies ranging from 6.4 × 10<sup>3</sup> to 3.7 × 10<sup>7</sup>, 3.2 × 10<sup>4</sup> to 2.2 × 10<sup>6</sup>, and 1.2 × 10<sup>4</sup> to 1.6 × 10<sup>7</sup> l<sup>−1</sup>. Next-generation sequencing (NGS) analysis on complete ORF2 amplicons from each sewage concentrate revealed the presence of 11 HAstV types, including HAstV-1, -2, -4, -5, MLB1, and VA1 to VA6, as well as non-human animal astroviruses. The most abundant HAstV types were HAstV-1, -4, and -5, which accounted for 70.3%, 12.6%, and 9.1% of total HAstV reads, respectively. Phylogenetic analysis revealed that the sequences obtained in this study were segregated into multiple transmission lineages, yet exhibited less genetic divergence among themselves than with foreign strains. These findings provide insight into the genotype diversity and genetic characterization of HAstVs during the COVID-19 pandemic, and highlight the effectiveness of utilizing NGS approaches to investigate sewage HAstVs.</p></div>","PeriodicalId":563,"journal":{"name":"Food and Environmental Virology","volume":"16 1","pages":"50 - 57"},"PeriodicalIF":4.1000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Environmental Virology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12560-023-09576-x","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Human astroviruses (HAstVs) are a significant etiological agent of acute gastroenteritis in children. In order to investigate the circulation of HAstVs during the COVID-19 pandemic, a 2-year environmental surveillance was conducted in Jinan between 2020 and 2021. A total of 24 sewage samples were collected and concentrated. Real-time PCR indicated a positive rate of 83.3%, 79.2% (19/24), and 62.5% for classic, MLB, and VA types of HAstV in sewage samples, respectively, with genomic copies ranging from 6.4 × 103 to 3.7 × 107, 3.2 × 104 to 2.2 × 106, and 1.2 × 104 to 1.6 × 107 l−1. Next-generation sequencing (NGS) analysis on complete ORF2 amplicons from each sewage concentrate revealed the presence of 11 HAstV types, including HAstV-1, -2, -4, -5, MLB1, and VA1 to VA6, as well as non-human animal astroviruses. The most abundant HAstV types were HAstV-1, -4, and -5, which accounted for 70.3%, 12.6%, and 9.1% of total HAstV reads, respectively. Phylogenetic analysis revealed that the sequences obtained in this study were segregated into multiple transmission lineages, yet exhibited less genetic divergence among themselves than with foreign strains. These findings provide insight into the genotype diversity and genetic characterization of HAstVs during the COVID-19 pandemic, and highlight the effectiveness of utilizing NGS approaches to investigate sewage HAstVs.
期刊介绍:
Food and Environmental Virology publishes original articles, notes and review articles on any aspect relating to the transmission of pathogenic viruses via the environment (water, air, soil etc.) and foods. This includes epidemiological studies, identification of novel or emerging pathogens, methods of analysis or characterisation, studies on survival and elimination, and development of procedural controls for industrial processes, e.g. HACCP plans. The journal will cover all aspects of this important area, and encompass studies on any human, animal, and plant pathogenic virus which is capable of transmission via the environment or food.