{"title":"Co-simulation for optimal working parameter selection during soil vibratory compaction process","authors":"Jianjun Shen, Zheng Tang, Feng Jia, Zhen Liu, Jingru Hou","doi":"10.1016/j.jterra.2023.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>The working parameters of vibratory rollers have an important effect on the compaction quality. The traditional method of obtaining the best working parameters through field tests is time-consuming and laborious. In order to determine the best working parameters more conveniently and accurately, a mechanical-hydraulic-finite element co-simulation method is proposed in this paper. This method considers the effect of the hydraulic system<span> on vibration compaction and makes the simulation result as close to the actual condition as possible. By analyzing the change of soil stress and settlement, the effect regulation of working parameters on compaction quality is obtained. The results show that the proposed co-simulation method can accurately reflect the real conditions, and the best compaction quality can be achieved when the walking speed is 3 km/h, the vibration frequency is 24 Hz, and the amplitude is 2.5 mm. The research provides a reference for improving the compaction quality and compacting-related simulation.</span></p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":"112 ","pages":"Pages 45-57"},"PeriodicalIF":2.4000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489823000988","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The working parameters of vibratory rollers have an important effect on the compaction quality. The traditional method of obtaining the best working parameters through field tests is time-consuming and laborious. In order to determine the best working parameters more conveniently and accurately, a mechanical-hydraulic-finite element co-simulation method is proposed in this paper. This method considers the effect of the hydraulic system on vibration compaction and makes the simulation result as close to the actual condition as possible. By analyzing the change of soil stress and settlement, the effect regulation of working parameters on compaction quality is obtained. The results show that the proposed co-simulation method can accurately reflect the real conditions, and the best compaction quality can be achieved when the walking speed is 3 km/h, the vibration frequency is 24 Hz, and the amplitude is 2.5 mm. The research provides a reference for improving the compaction quality and compacting-related simulation.
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.