Fault diagnosis using signal processing and deep learning-based image pattern recognition

Zhenxing Ren, Jianfeng Guo
{"title":"Fault diagnosis using signal processing and deep learning-based image pattern recognition","authors":"Zhenxing Ren, Jianfeng Guo","doi":"10.1515/teme-2023-0089","DOIUrl":null,"url":null,"abstract":"Abstract The vibration signal is a typical non-stationary signal, making it challenging to use traditional time-frequency analysis techniques for fault diagnosis. Therefore, this work investigates the processing of vibration signals and proposes a deep learning method based on processed signals for the fault diagnosis of ball bearings. In this work, the fault diagnosis is formulated as an image classification problem and solved with deep learning networks. The intrinsic mode functions (IMFs), converted from the vibration signals in the time domain, are then transformed into symmetrized dot pattern (SDP) images. In order to increase classification accuracy, the SDP parameters in this study are chosen by optimizing image similarity. The feasibility and accuracy of the proposed approach are examined experimentally.","PeriodicalId":509687,"journal":{"name":"tm - Technisches Messen","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"tm - Technisches Messen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/teme-2023-0089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The vibration signal is a typical non-stationary signal, making it challenging to use traditional time-frequency analysis techniques for fault diagnosis. Therefore, this work investigates the processing of vibration signals and proposes a deep learning method based on processed signals for the fault diagnosis of ball bearings. In this work, the fault diagnosis is formulated as an image classification problem and solved with deep learning networks. The intrinsic mode functions (IMFs), converted from the vibration signals in the time domain, are then transformed into symmetrized dot pattern (SDP) images. In order to increase classification accuracy, the SDP parameters in this study are chosen by optimizing image similarity. The feasibility and accuracy of the proposed approach are examined experimentally.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用信号处理和基于深度学习的图像模式识别进行故障诊断
摘要 振动信号是一种典型的非稳态信号,因此使用传统的时频分析技术进行故障诊断具有挑战性。因此,本研究对振动信号进行了处理,并提出了一种基于处理后信号的深度学习方法,用于滚珠轴承的故障诊断。在这项工作中,故障诊断被表述为一个图像分类问题,并通过深度学习网络加以解决。从时域振动信号转换而来的本征模态函数(IMF)被转化为对称点模式(SDP)图像。为了提高分类准确性,本研究通过优化图像相似性来选择 SDP 参数。实验检验了建议方法的可行性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metrology for sensor networks: metrological traceability and measurement uncertainties for air quality monitoring Combination of generic novelty detection and supervised classification pipelines for industrial condition monitoring Kalibrierung und Messunsicherheitsbetrachtung eines medizinischen Bohrers mit integrierter Temperatursensorik zur Minimierung des Patientenrisikos bei minimalinvasiven Bohrungen an der lateralen Schädelbasis Der Einfluss der Messunsicherheit in der Materialprüfung – Von der Messmittelauswahl zur Konformitätsaussage am Beispiel des Zugversuchs bei erhöhter Temperatur nach DIN EN ISO 6892-2:2018-09 Tagung Messunsicherheit Erfurt 2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1