Enhancing winter road maintenance with explainable AI: SHAP analysis for interpreting machine learning models in road friction estimation

IF 1.1 4区 工程技术 Q3 ENGINEERING, CIVIL Canadian Journal of Civil Engineering Pub Date : 2024-01-11 DOI:10.1139/cjce-2023-0410
Xueru Ding, Tae J. Kwon
{"title":"Enhancing winter road maintenance with explainable AI: SHAP analysis for interpreting machine learning models in road friction estimation","authors":"Xueru Ding, Tae J. Kwon","doi":"10.1139/cjce-2023-0410","DOIUrl":null,"url":null,"abstract":"Effective winter road maintenance relies on precise road friction estimation. Machine learning (ML) models have shown significant promise in this; however, their inherent complexity makes understanding their inner workings challenging. This paper addresses this issue by conducting a comparative analysis of road friction estimation models using four ML methods, including regression tree, random forest, eXtreme Gradient Boosting (XGBoost), and support vector regression (SVR). We then employ the SHapley Additive exPlanations (SHAP) explainable artificial intelligence (AI) to enhance model interpretability. Our analysis on an Alberta dataset reveals that the XGBoost model performs best with an accuracy of 91.39%. The SHAP analysis illustrates the logical relationships between predictor features and friction within all three tree-based models, but it also uncovers inconsistencies within the SVR model, potentially attributed to insufficient feature interactions. Thus, this paper not only showcase the role of explainable AI in improving the ML interpretability of models for road friction estimation, but also provides practical insights that could improve winter road maintenance decisions.","PeriodicalId":9414,"journal":{"name":"Canadian Journal of Civil Engineering","volume":"2 7","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1139/cjce-2023-0410","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Effective winter road maintenance relies on precise road friction estimation. Machine learning (ML) models have shown significant promise in this; however, their inherent complexity makes understanding their inner workings challenging. This paper addresses this issue by conducting a comparative analysis of road friction estimation models using four ML methods, including regression tree, random forest, eXtreme Gradient Boosting (XGBoost), and support vector regression (SVR). We then employ the SHapley Additive exPlanations (SHAP) explainable artificial intelligence (AI) to enhance model interpretability. Our analysis on an Alberta dataset reveals that the XGBoost model performs best with an accuracy of 91.39%. The SHAP analysis illustrates the logical relationships between predictor features and friction within all three tree-based models, but it also uncovers inconsistencies within the SVR model, potentially attributed to insufficient feature interactions. Thus, this paper not only showcase the role of explainable AI in improving the ML interpretability of models for road friction estimation, but also provides practical insights that could improve winter road maintenance decisions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用可解释的人工智能加强冬季道路养护:用 SHAP 分析法解释道路摩擦力估算中的机器学习模型
有效的冬季道路养护有赖于精确的道路摩擦力估算。机器学习(ML)模型在这方面显示出了巨大的前景;然而,由于其固有的复杂性,了解其内部工作原理具有挑战性。本文针对这一问题,使用四种 ML 方法(包括回归树、随机森林、极梯度提升 (XGBoost) 和支持向量回归 (SVR))对道路摩擦力估算模型进行了比较分析。然后,我们采用 SHapley Additive exPlanations (SHAP) 可解释人工智能 (AI) 来增强模型的可解释性。我们对阿尔伯塔省数据集的分析表明,XGBoost 模型的准确率为 91.39%,表现最佳。SHAP 分析表明了所有三种基于树的模型中预测特征与摩擦之间的逻辑关系,但也发现了 SVR 模型中的不一致之处,这可能是由于特征交互不足造成的。因此,本文不仅展示了可解释人工智能在改善道路摩擦力估算模型的 ML 可解释性方面的作用,还提供了可改善冬季道路维护决策的实用见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Canadian Journal of Civil Engineering
Canadian Journal of Civil Engineering 工程技术-工程:土木
CiteScore
3.00
自引率
7.10%
发文量
105
审稿时长
14 months
期刊介绍: The Canadian Journal of Civil Engineering is the official journal of the Canadian Society for Civil Engineering. It contains articles on environmental engineering, hydrotechnical engineering, structural engineering, construction engineering, engineering mechanics, engineering materials, and history of civil engineering. Contributors include recognized researchers and practitioners in industry, government, and academia. New developments in engineering design and construction are also featured.
期刊最新文献
Enhancing winter road maintenance with explainable AI: SHAP analysis for interpreting machine learning models in road friction estimation Preface to the special issue on river ice and infrastructure Effect of hemispherical roughness spacing on Double-averaged turbulence characteristics for different flow submergence Ductility-related seismic modification factor for CLT shear-wall and Glulam moment-resisting frame dual system Seismic Vulnerability Assessment of Post-Tensioned Timber Building Fitted with Dissipative Bracing System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1