Analytical Study of Structural Conformation and Prestressing State of Drum-Shaped Honeycomb Quad-Strut Cable Dome Structure with Different Calculation Methods
{"title":"Analytical Study of Structural Conformation and Prestressing State of Drum-Shaped Honeycomb Quad-Strut Cable Dome Structure with Different Calculation Methods","authors":"Hui Lv, Zhaoquan Chen, Shilin Dong, Zhongyi Zhu, Xin Xie, Yanfen Zhong","doi":"10.3390/buildings14010179","DOIUrl":null,"url":null,"abstract":"Building upon the analytical study of the structural configuration and prestress state of the drum-shaped quad-strut cable dome, we conducted further investigation into its structural configuration. By employing the nodal equilibrium equations to solve the prestress state analysis of the cable dome, we compared the effects of two different cable laying methods on the prestress state of the cable dome structure. These methods include equal length of the radial horizontal projection of the upper chord ridge cables and equal radial chord length of the upper chord ridge cables. The analysis results show that the radial length of the top chord and its corresponding radial horizontal projection length of the cable dome structure can effectively reflect the trend of the prestress state of the structural configuration. Furthermore, by using a rise-to-span ratio of 0.11 as a threshold, the cable dome configuration is categorized into the flat spheroidal structural configuration and the small hemispheroidal structural configuration. When the structure is analyzed using a small rise-to-span ratio, the difference in prestress calculations between the two structural configurations is found to be less than 10%. Additionally, the structure exhibits a more uniform distribution of prestress, with the prestress gradually increasing from the inner circle to the outer circle. However, when the rise-to-span ratio increases, the difference between the prestress calculation results of the two configurations also increases, emphasizing the need to deploy upper chord ridge cables based on equal radial chord lengths (arc lengths). The research presented in this paper provides a novel insight into the structural topological form and prestress state calculation of cable domes with this configuration.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"9 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010179","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Building upon the analytical study of the structural configuration and prestress state of the drum-shaped quad-strut cable dome, we conducted further investigation into its structural configuration. By employing the nodal equilibrium equations to solve the prestress state analysis of the cable dome, we compared the effects of two different cable laying methods on the prestress state of the cable dome structure. These methods include equal length of the radial horizontal projection of the upper chord ridge cables and equal radial chord length of the upper chord ridge cables. The analysis results show that the radial length of the top chord and its corresponding radial horizontal projection length of the cable dome structure can effectively reflect the trend of the prestress state of the structural configuration. Furthermore, by using a rise-to-span ratio of 0.11 as a threshold, the cable dome configuration is categorized into the flat spheroidal structural configuration and the small hemispheroidal structural configuration. When the structure is analyzed using a small rise-to-span ratio, the difference in prestress calculations between the two structural configurations is found to be less than 10%. Additionally, the structure exhibits a more uniform distribution of prestress, with the prestress gradually increasing from the inner circle to the outer circle. However, when the rise-to-span ratio increases, the difference between the prestress calculation results of the two configurations also increases, emphasizing the need to deploy upper chord ridge cables based on equal radial chord lengths (arc lengths). The research presented in this paper provides a novel insight into the structural topological form and prestress state calculation of cable domes with this configuration.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates