Decellularized fetal collagen exhibits chondroinductive potential for bone marrow-derived mesenchymal stem cells by enhancing glycosaminoglycan production
S. M. Amirtham, Ganesh Parasuraman, Jeya Lisha, D. V. Francis, Abel Livingston, Grace Rebekah, Elizabeth Vinod
{"title":"Decellularized fetal collagen exhibits chondroinductive potential for bone marrow-derived mesenchymal stem cells by enhancing glycosaminoglycan production","authors":"S. M. Amirtham, Ganesh Parasuraman, Jeya Lisha, D. V. Francis, Abel Livingston, Grace Rebekah, Elizabeth Vinod","doi":"10.52083/kjjc3228","DOIUrl":null,"url":null,"abstract":"Articular cartilage repair is challenging due to limited access to reparative cells and a lack of self-healing mechanisms. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are a promising therapeutic option, but their tendency to form fibrocartilage during repair necessitates the optimization of culture conditions. To overcome this limitation, optimizing in-vitro culture conditions with biological coating using extracellular matrix-derived proteins has been efficient in mimicking in-vivo cellular behavior. Fetal cartilage, with abundant collagen, proteoglycans and glycosaminoglycans has emerged as a potential source for cartilage repair. No studies have so far evaluated the effect of fetal cartilage-derived collagen on BM-MSCs. This study aimed to evaluate the chondro-inductive potential of decellularized collagen derived from fetal cartilage, which was used as a coating material for expansion of BM-MSCs. The extraction of fetal collagen was performed from the tibiofemoral joint of a 36+4-week gestational age fetus. The freeze-dried collagen type II was reconstituted at a concentration of 10μg/ml and used to coat the culture flasks. Passage 3 BM-MSCs were divided into two groups: a) standard expansion medium (BM-MSCs) and b) collagen-coated plasticware (collagen-coated BM-MSCs). Growth kinetics, surface markers, gene expression, and differentiation potential were assessed. The decellularized collagen coating did not influence the growth kinetics, surface marker and gene expression of BM-MSCs. However, it positively influenced GAG accumulation and collagen type II deposition. Further studies utilizing in-vivo models are warranted to evaluate the potential of collagen-coated BM-MSCs and exploit their adjuvant effect on chondrogenesis.","PeriodicalId":11978,"journal":{"name":"European journal of anatomy","volume":"36 35","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of anatomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52083/kjjc3228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Articular cartilage repair is challenging due to limited access to reparative cells and a lack of self-healing mechanisms. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are a promising therapeutic option, but their tendency to form fibrocartilage during repair necessitates the optimization of culture conditions. To overcome this limitation, optimizing in-vitro culture conditions with biological coating using extracellular matrix-derived proteins has been efficient in mimicking in-vivo cellular behavior. Fetal cartilage, with abundant collagen, proteoglycans and glycosaminoglycans has emerged as a potential source for cartilage repair. No studies have so far evaluated the effect of fetal cartilage-derived collagen on BM-MSCs. This study aimed to evaluate the chondro-inductive potential of decellularized collagen derived from fetal cartilage, which was used as a coating material for expansion of BM-MSCs. The extraction of fetal collagen was performed from the tibiofemoral joint of a 36+4-week gestational age fetus. The freeze-dried collagen type II was reconstituted at a concentration of 10μg/ml and used to coat the culture flasks. Passage 3 BM-MSCs were divided into two groups: a) standard expansion medium (BM-MSCs) and b) collagen-coated plasticware (collagen-coated BM-MSCs). Growth kinetics, surface markers, gene expression, and differentiation potential were assessed. The decellularized collagen coating did not influence the growth kinetics, surface marker and gene expression of BM-MSCs. However, it positively influenced GAG accumulation and collagen type II deposition. Further studies utilizing in-vivo models are warranted to evaluate the potential of collagen-coated BM-MSCs and exploit their adjuvant effect on chondrogenesis.
期刊介绍:
El European Journal of Anatomy es continuación de la revista “Anales de Anatomía”, publicada en español desde 1952 a 1993. Tras unos años de interrupción debido fundamentalmente a problemas económicos para su mantenimiento, la Sociedad Anatómica Española quiso dar un nuevo impulso a dicha publicación, por lo que fue sustituido su título por el actual, además de ser publicada íntegramente en inglés para procurar así una mayor difusión fuera de nuestras fronteras. Este nuevo periodo se inició en 1996 completándose el primer volumen durante el año 1997.