Rapid generation of time-optimal rendezvous trajectory based on convex optimisation and DNN

R.D. Zhang, W.W. Cai, L.P. Yang
{"title":"Rapid generation of time-optimal rendezvous trajectory based on convex optimisation and DNN","authors":"R.D. Zhang, W.W. Cai, L.P. Yang","doi":"10.1017/aer.2023.110","DOIUrl":null,"url":null,"abstract":"\n The minimum flight time of spacecraft rendezvous is one of the fundamental indexes for mission design. This paper proposes a rapid trajectory planning method based on convex optimisation and deep neural network (DNN). The time-optimal trajectory planning problem is reconstructed into a double-layer optimisation framework, with the inner being a convex optimisation problem and the outer being a root-finding problem. The thrust properties corresponding to time-optimal control are analysed theoretically. A DNN-based rapid planning method (DNN-RPM) is put forward to improve computational efficiency, in which the trained DNN provides a high-quality initial guess for Newton’s method. The DNN-RPM is extended to search for the optimal entering angle of natural-motion circumnavigation orbit injection problem and the minimum reconfiguration time of spacecraft swarm. Numerical simulations show that the proposed method can improve the computational efficiency while ensuring the calculation accuracy.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"15 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Aeronautical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aer.2023.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The minimum flight time of spacecraft rendezvous is one of the fundamental indexes for mission design. This paper proposes a rapid trajectory planning method based on convex optimisation and deep neural network (DNN). The time-optimal trajectory planning problem is reconstructed into a double-layer optimisation framework, with the inner being a convex optimisation problem and the outer being a root-finding problem. The thrust properties corresponding to time-optimal control are analysed theoretically. A DNN-based rapid planning method (DNN-RPM) is put forward to improve computational efficiency, in which the trained DNN provides a high-quality initial guess for Newton’s method. The DNN-RPM is extended to search for the optimal entering angle of natural-motion circumnavigation orbit injection problem and the minimum reconfiguration time of spacecraft swarm. Numerical simulations show that the proposed method can improve the computational efficiency while ensuring the calculation accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于凸优化和 DNN 快速生成时间最优交会轨迹
航天器交会的最短飞行时间是飞行任务设计的基本指标之一。本文提出了一种基于凸优化和深度神经网络(DNN)的快速轨迹规划方法。将时间最优轨迹规划问题重构为双层优化框架,内层为凸优化问题,外层为寻根问题。从理论上分析了时间最优控制所对应的推力特性。为提高计算效率,提出了一种基于 DNN 的快速规划方法(DNN-RPM),其中经过训练的 DNN 为牛顿法提供了高质量的初始猜测。将 DNN-RPM 扩展用于搜索自然运动环绕轨道注入问题的最佳进入角和航天器群的最小重构时间。数值模拟表明,所提出的方法既能提高计算效率,又能保证计算精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of actuation and sensor measurement delays on stability of real-time hybrid aeroelastic simulation system New design of materials, order and thicknesses of an aircraft windshield behaviour layers to increase its resistance against repeated bird impacts Simulation of particle-laden flows and erosion in an axial fan stage considering the relative position of the blades Performance analysis of power conditioning and distribution module for microsatellite applications Numerical investigation of thermochemical non-equilibrium effects in Mach 10 scramjet nozzle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1