Numerical investigation of thermochemical non-equilibrium effects in Mach 10 scramjet nozzle

J.P. Wang, C. Zhuo, C.L. Dai, B. Sun
{"title":"Numerical investigation of thermochemical non-equilibrium effects in Mach 10 scramjet nozzle","authors":"J.P. Wang, C. Zhuo, C.L. Dai, B. Sun","doi":"10.1017/aer.2024.47","DOIUrl":null,"url":null,"abstract":"\n High-temperature non-equilibrium effects are prominent in scramjet nozzle flows at high Mach numbers. Hence, the thermochemical non-equilibrium gas model incorporating the vibrational relaxation process of molecules in the hydrocarbon-air reaction is developed to numerically simulate the flow of a hydrocarbon fuel scramjet nozzle at Mach 10. Besides, the results computed by the models of the thermally perfect gas, chemically non-equilibrium gas, and thermally non-equilibrium chemically frozen gas are applied for comparative studies. Results indicate that chemical non-equilibrium effects are more significant for the flow-field structure and parameters compared to thermal non-equilibrium effects. Meanwhile, vibrational relaxation and chemical reactions interact in the flow-field. The heat released from the chemical reactions in the flow-field of the thermochemical non-equilibrium gas model makes the thermal non-equilibrium effects weaker compared to the thermally non-equilibrium chemically frozen gas model; the chemical reactions in the thermochemical non-equilibrium gas model are more intense than in the chemically non-equilibrium gas model. Due to the slow relaxation of vibrational energy, the thermal non-equilibrium models predicted nozzle thrust lower than the thermal equilibrium models by approximately 1.11% to 1.33%; when considering the chemical reactions, the chemical non-equilibrium models predicted nozzle thrust higher than the chemical frozen models by approximately 7.30% to 7.54%. Hence, the structural design and performance study of the high Mach numbers scramjet nozzle must consider thermochemical non-equilibrium effects.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"17 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Aeronautical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aer.2024.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-temperature non-equilibrium effects are prominent in scramjet nozzle flows at high Mach numbers. Hence, the thermochemical non-equilibrium gas model incorporating the vibrational relaxation process of molecules in the hydrocarbon-air reaction is developed to numerically simulate the flow of a hydrocarbon fuel scramjet nozzle at Mach 10. Besides, the results computed by the models of the thermally perfect gas, chemically non-equilibrium gas, and thermally non-equilibrium chemically frozen gas are applied for comparative studies. Results indicate that chemical non-equilibrium effects are more significant for the flow-field structure and parameters compared to thermal non-equilibrium effects. Meanwhile, vibrational relaxation and chemical reactions interact in the flow-field. The heat released from the chemical reactions in the flow-field of the thermochemical non-equilibrium gas model makes the thermal non-equilibrium effects weaker compared to the thermally non-equilibrium chemically frozen gas model; the chemical reactions in the thermochemical non-equilibrium gas model are more intense than in the chemically non-equilibrium gas model. Due to the slow relaxation of vibrational energy, the thermal non-equilibrium models predicted nozzle thrust lower than the thermal equilibrium models by approximately 1.11% to 1.33%; when considering the chemical reactions, the chemical non-equilibrium models predicted nozzle thrust higher than the chemical frozen models by approximately 7.30% to 7.54%. Hence, the structural design and performance study of the high Mach numbers scramjet nozzle must consider thermochemical non-equilibrium effects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
马赫数 10 加力燃烧喷嘴热化学非平衡效应的数值研究
高温非平衡效应在高马赫数的扰流喷嘴流动中非常突出。因此,我们建立了热化学非平衡气体模型,其中包含了碳氢化合物-空气反应中分子的振动弛豫过程,用于数值模拟 10 马赫碳氢化合物燃料扰流喷嘴的流动。此外,还应用热完全气体、化学非平衡气体和热非平衡化学凝固气体模型计算的结果进行比较研究。结果表明,与热非平衡态效应相比,化学非平衡态效应对流场结构和参数的影响更为显著。同时,振动弛豫和化学反应在流场中相互作用。热化学非平衡气体模型流场中化学反应释放的热量使得热非平衡性效应比热非平衡化学冻结气体模型弱;热化学非平衡气体模型中的化学反应比化学非平衡气体模型中的化学反应强烈。由于振动能量弛豫较慢,热非均衡模型预测的喷嘴推力比热平衡模型低约 1.11% 至 1.33%;考虑到化学反应,化学非均衡模型预测的喷嘴推力比化学冻结模型高约 7.30% 至 7.54%。因此,高马赫数扰流喷嘴的结构设计和性能研究必须考虑热化学非平衡效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of actuation and sensor measurement delays on stability of real-time hybrid aeroelastic simulation system New design of materials, order and thicknesses of an aircraft windshield behaviour layers to increase its resistance against repeated bird impacts Simulation of particle-laden flows and erosion in an axial fan stage considering the relative position of the blades Performance analysis of power conditioning and distribution module for microsatellite applications Numerical investigation of thermochemical non-equilibrium effects in Mach 10 scramjet nozzle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1