This paper is focused on the stability of real-time hybrid aeroelastic simulation systems for flexible wings. In a hybrid aeroelastic simulation, a coupled aeroelastic system is ‘broken down’ into an aerodynamic simulation subsystem and a structural vibration testing subsystem. The coupling between structural dynamics and aerodynamics is achieved by real-time communication between the two subsystems. Real-time hybrid aeroelastic simulations can address the limitations associated with conventional aeroelastic testing performed within a wind tunnel or with pure computational aeroelastic simulation. However, as the coupling between structural dynamics and aerodynamics is completed through the real-time actuation and sensor measurement, their delays may inherently impact the performance of hybrid simulation system and subsequently alter the measured aeroelastic stability characteristics of the flexible wings. This study aims to quantify the impact of actuation and sensor measurement delays on the measured aeroelastic stability, e.g. the flutter boundary, of flexible wings during real-time hybrid simulations, especially when different aerodynamic models are implemented.
{"title":"Impact of actuation and sensor measurement delays on stability of real-time hybrid aeroelastic simulation system","authors":"W. Su, W. Song","doi":"10.1017/aer.2024.46","DOIUrl":"https://doi.org/10.1017/aer.2024.46","url":null,"abstract":"\u0000 This paper is focused on the stability of real-time hybrid aeroelastic simulation systems for flexible wings. In a hybrid aeroelastic simulation, a coupled aeroelastic system is ‘broken down’ into an aerodynamic simulation subsystem and a structural vibration testing subsystem. The coupling between structural dynamics and aerodynamics is achieved by real-time communication between the two subsystems. Real-time hybrid aeroelastic simulations can address the limitations associated with conventional aeroelastic testing performed within a wind tunnel or with pure computational aeroelastic simulation. However, as the coupling between structural dynamics and aerodynamics is completed through the real-time actuation and sensor measurement, their delays may inherently impact the performance of hybrid simulation system and subsequently alter the measured aeroelastic stability characteristics of the flexible wings. This study aims to quantify the impact of actuation and sensor measurement delays on the measured aeroelastic stability, e.g. the flutter boundary, of flexible wings during real-time hybrid simulations, especially when different aerodynamic models are implemented.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"19 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141658725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
There are instances when an aircraft encounters a bird’s flock or faces a heavy hailstorm, causing the windshield to sustain consecutive impacts. Therefore, the investigation of windshield resistance against repeated impacts is crucial. In this research, various tests such as tensile, split Hopkinson pressure bar (SHPB), and three-point bending are conducted to extract the mechanical properties of the materials used in a five-layers windshield under high strain rates. Using this information, the bird impact on the windshield is simulated using the smooth particle hydrodynamics (SPH) method, and the results are compared with real bird impact test outcomes, and the validation of this simulation is confirmed. The simulation of two consecutive bird strikes indicates the current windshield lacks sufficient resistance against successive dual impacts; in such scenarios, the second bird penetrates the windshield after breaking it and tearing the interlayer. Considering new materials and thicknesses for each windshield layer, a Taguchi experimental design method is employed to examine various layer arrangements with different materials and thicknesses. The configurations in which the windshield can withstand a maximum of three bird impacts in succession are identified. Subsequently, using the “the smaller, the better” criterion in the Taguchi optimisation approach, the configuration that not only prevents bird penetration but also minimises the maximum strain in the inner layer is selected as the desired outcome. Thus, a new five-layer windshield with new materials and thicknesses is presented, which is resistant to the repeated collision of up to three birds, tearing in the interlayer and bird penetration does not happen.
{"title":"New design of materials, order and thicknesses of an aircraft windshield behaviour layers to increase its resistance against repeated bird impacts","authors":"M. Rezaei, B. Arezoo, S. Ziaei-Rad","doi":"10.1017/aer.2024.33","DOIUrl":"https://doi.org/10.1017/aer.2024.33","url":null,"abstract":"\u0000 There are instances when an aircraft encounters a bird’s flock or faces a heavy hailstorm, causing the windshield to sustain consecutive impacts. Therefore, the investigation of windshield resistance against repeated impacts is crucial. In this research, various tests such as tensile, split Hopkinson pressure bar (SHPB), and three-point bending are conducted to extract the mechanical properties of the materials used in a five-layers windshield under high strain rates. Using this information, the bird impact on the windshield is simulated using the smooth particle hydrodynamics (SPH) method, and the results are compared with real bird impact test outcomes, and the validation of this simulation is confirmed. The simulation of two consecutive bird strikes indicates the current windshield lacks sufficient resistance against successive dual impacts; in such scenarios, the second bird penetrates the windshield after breaking it and tearing the interlayer. Considering new materials and thicknesses for each windshield layer, a Taguchi experimental design method is employed to examine various layer arrangements with different materials and thicknesses. The configurations in which the windshield can withstand a maximum of three bird impacts in succession are identified. Subsequently, using the “the smaller, the better” criterion in the Taguchi optimisation approach, the configuration that not only prevents bird penetration but also minimises the maximum strain in the inner layer is selected as the desired outcome. Thus, a new five-layer windshield with new materials and thicknesses is presented, which is resistant to the repeated collision of up to three birds, tearing in the interlayer and bird penetration does not happen.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"7 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141267577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Axial fans are vital accessories in aircraft ventilation systems, but, they may experience erosion from particulate flows, causing a decline in effectiveness over time. This study investigated the trajectories of two types of sand particles and erosion in an axial fan stage, considering the relative position of the blades facing the inlet guide vanes. The movement of particles was simulated using an in-house code that implements a Lagrangian approach along with a stochastic particle-eddy interaction model. The flow field was solved separately and the flow data was transferred to the particle trajectory code. The finite element method allowed for the tracking of particles through the computational cells and accurate determination of their impact positions. A semi-empirical erosion correlation was used to evaluate the local erosion rates, mass removal, and geometry deterioration. As a result, the rotor exhibits a high frequency of impacts and significant erosion on the leading edge of the blade, extending to the upper corner of the pressure side and blade tip, as well as the front of the suction side. In the inlet guide vane, the erosion is spread out along the entire pressure side but at lower erosion rates compared to the rotor blade. The erosion patterns obtained at different pitch-wise positions were cumulated to get better representation of erosion patterns. After being exposed to MIL-E5007E sand (0–1000 $unicode{x03BC}$ m) at the highest concentration for 10 hours, the blade experienced a reduction of a 0.29% in mass, a 0.45% decrease in tip chord, and a 0.23% increase in tip clearance. On the other hand, AC-coarse sand (0–200 μm) resulted in a 0.23% decrease in blade mass, a 0.4% reduction in tip chord, and a 0.16% increase in tip clearance. The data that is available can be used to monitor the lifespan of axial fans of similar design and select appropriate coatings to protect against erosion.
{"title":"Simulation of particle-laden flows and erosion in an axial fan stage considering the relative position of the blades","authors":"A. Ghenaiet","doi":"10.1017/aer.2024.45","DOIUrl":"https://doi.org/10.1017/aer.2024.45","url":null,"abstract":"\u0000 Axial fans are vital accessories in aircraft ventilation systems, but, they may experience erosion from particulate flows, causing a decline in effectiveness over time. This study investigated the trajectories of two types of sand particles and erosion in an axial fan stage, considering the relative position of the blades facing the inlet guide vanes.\u0000 The movement of particles was simulated using an in-house code that implements a Lagrangian approach along with a stochastic particle-eddy interaction model. The flow field was solved separately and the flow data was transferred to the particle trajectory code. The finite element method allowed for the tracking of particles through the computational cells and accurate determination of their impact positions. A semi-empirical erosion correlation was used to evaluate the local erosion rates, mass removal, and geometry deterioration.\u0000 As a result, the rotor exhibits a high frequency of impacts and significant erosion on the leading edge of the blade, extending to the upper corner of the pressure side and blade tip, as well as the front of the suction side. In the inlet guide vane, the erosion is spread out along the entire pressure side but at lower erosion rates compared to the rotor blade. The erosion patterns obtained at different pitch-wise positions were cumulated to get better representation of erosion patterns. After being exposed to MIL-E5007E sand (0–1000 \u0000 \u0000 \u0000 \u0000$unicode{x03BC}$\u0000\u0000 \u0000 m) at the highest concentration for 10 hours, the blade experienced a reduction of a 0.29% in mass, a 0.45% decrease in tip chord, and a 0.23% increase in tip clearance. On the other hand, AC-coarse sand (0–200 μm) resulted in a 0.23% decrease in blade mass, a 0.4% reduction in tip chord, and a 0.16% increase in tip clearance.\u0000 The data that is available can be used to monitor the lifespan of axial fans of similar design and select appropriate coatings to protect against erosion.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"19 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141270910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Bensaada, S. Della Krachai, F. Metehri, KDE. Kerrouche, MA. Mebrek, M. Beldjehem, F. Arezki
Algeria’s micro-satellite, Alsat-1b, was successfully launched into a 680 km low Earth orbit onboard a PSLV-C35 rocket from Sriharikota, South India, on September 26, 2016. The spacecraft was conceived, built and launched as part of an 18-month technology transfer programme between Algeria’s Algerian Space Agency (ASAL) and the United Kingdom’s Surrey Satellite Technology Limited (SSTL). This document details the Power Conditioning and Distribution Module’s (PCM-PDM) design and performance in orbit, critical component of a satellite electrical power system, responsible for converting, regulating and distributing power to various subsystems and payloads. The PCM-PDM developed and produced by SSTL was subjected to rigorous testing simulating harsh space conditions to assess its performance. The results of this comprehensive analysis indicate that the module can effectively withstand extreme environmental factors and function optimally in challenging settings. The analysis focused on the PCM-PDM’s ability to provide reliable and efficient power conditioning and distribution to the satellite, including its load management capabilities, overcurrent protection, protection against undervoltage and critical mode operations. The results of the performance analysis showed that the PCM-PDM met the required specifications and demonstrated reliable and efficient operation in different modes of the satellite’s mission. The study highlights the importance of careful design and rigorous testing of the PCM-PDM to ensure the reliable and efficient operation of the satellite and its payloads.
{"title":"Performance analysis of power conditioning and distribution module for microsatellite applications","authors":"M. Bensaada, S. Della Krachai, F. Metehri, KDE. Kerrouche, MA. Mebrek, M. Beldjehem, F. Arezki","doi":"10.1017/aer.2024.48","DOIUrl":"https://doi.org/10.1017/aer.2024.48","url":null,"abstract":"\u0000 Algeria’s micro-satellite, Alsat-1b, was successfully launched into a 680 km low Earth orbit onboard a PSLV-C35 rocket from Sriharikota, South India, on September 26, 2016. The spacecraft was conceived, built and launched as part of an 18-month technology transfer programme between Algeria’s Algerian Space Agency (ASAL) and the United Kingdom’s Surrey Satellite Technology Limited (SSTL). This document details the Power Conditioning and Distribution Module’s (PCM-PDM) design and performance in orbit, critical component of a satellite electrical power system, responsible for converting, regulating and distributing power to various subsystems and payloads. The PCM-PDM developed and produced by SSTL was subjected to rigorous testing simulating harsh space conditions to assess its performance. The results of this comprehensive analysis indicate that the module can effectively withstand extreme environmental factors and function optimally in challenging settings. The analysis focused on the PCM-PDM’s ability to provide reliable and efficient power conditioning and distribution to the satellite, including its load management capabilities, overcurrent protection, protection against undervoltage and critical mode operations. The results of the performance analysis showed that the PCM-PDM met the required specifications and demonstrated reliable and efficient operation in different modes of the satellite’s mission. The study highlights the importance of careful design and rigorous testing of the PCM-PDM to ensure the reliable and efficient operation of the satellite and its payloads.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"4 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141108494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High-temperature non-equilibrium effects are prominent in scramjet nozzle flows at high Mach numbers. Hence, the thermochemical non-equilibrium gas model incorporating the vibrational relaxation process of molecules in the hydrocarbon-air reaction is developed to numerically simulate the flow of a hydrocarbon fuel scramjet nozzle at Mach 10. Besides, the results computed by the models of the thermally perfect gas, chemically non-equilibrium gas, and thermally non-equilibrium chemically frozen gas are applied for comparative studies. Results indicate that chemical non-equilibrium effects are more significant for the flow-field structure and parameters compared to thermal non-equilibrium effects. Meanwhile, vibrational relaxation and chemical reactions interact in the flow-field. The heat released from the chemical reactions in the flow-field of the thermochemical non-equilibrium gas model makes the thermal non-equilibrium effects weaker compared to the thermally non-equilibrium chemically frozen gas model; the chemical reactions in the thermochemical non-equilibrium gas model are more intense than in the chemically non-equilibrium gas model. Due to the slow relaxation of vibrational energy, the thermal non-equilibrium models predicted nozzle thrust lower than the thermal equilibrium models by approximately 1.11% to 1.33%; when considering the chemical reactions, the chemical non-equilibrium models predicted nozzle thrust higher than the chemical frozen models by approximately 7.30% to 7.54%. Hence, the structural design and performance study of the high Mach numbers scramjet nozzle must consider thermochemical non-equilibrium effects.
{"title":"Numerical investigation of thermochemical non-equilibrium effects in Mach 10 scramjet nozzle","authors":"J.P. Wang, C. Zhuo, C.L. Dai, B. Sun","doi":"10.1017/aer.2024.47","DOIUrl":"https://doi.org/10.1017/aer.2024.47","url":null,"abstract":"\u0000 High-temperature non-equilibrium effects are prominent in scramjet nozzle flows at high Mach numbers. Hence, the thermochemical non-equilibrium gas model incorporating the vibrational relaxation process of molecules in the hydrocarbon-air reaction is developed to numerically simulate the flow of a hydrocarbon fuel scramjet nozzle at Mach 10. Besides, the results computed by the models of the thermally perfect gas, chemically non-equilibrium gas, and thermally non-equilibrium chemically frozen gas are applied for comparative studies. Results indicate that chemical non-equilibrium effects are more significant for the flow-field structure and parameters compared to thermal non-equilibrium effects. Meanwhile, vibrational relaxation and chemical reactions interact in the flow-field. The heat released from the chemical reactions in the flow-field of the thermochemical non-equilibrium gas model makes the thermal non-equilibrium effects weaker compared to the thermally non-equilibrium chemically frozen gas model; the chemical reactions in the thermochemical non-equilibrium gas model are more intense than in the chemically non-equilibrium gas model. Due to the slow relaxation of vibrational energy, the thermal non-equilibrium models predicted nozzle thrust lower than the thermal equilibrium models by approximately 1.11% to 1.33%; when considering the chemical reactions, the chemical non-equilibrium models predicted nozzle thrust higher than the chemical frozen models by approximately 7.30% to 7.54%. Hence, the structural design and performance study of the high Mach numbers scramjet nozzle must consider thermochemical non-equilibrium effects.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"17 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141112749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Runway overruns (ROs) are the result of an aircraft rolling beyond the end of a runway, which is one of the accident’s types that most frequently occurs on aviation. The risk of an RO arises from the synergistic effect among its precursors, such as unstable approaches, long touchdowns and inadequate use of deceleration devices. To analyse this complex socio-technical system, the current work proposes a customised functional resonance analysis method, called FRAM-FDM, as traditional techniques of risk and safety assessment do not identify the interactions and couplings between the various functional aspects of the system itself, especially regarding human and organisational components. Basically, FRAM-FDM is the coupling of a traditional FRAM with flight data monitoring (FDM) techniques, used here to quantify the variabilities of the flight crew performance while executing the required activity (i.e. the landing). In this proposal, these variabilities (i.e. the FRAM functions aspects) are aggregated by the addend of a logistic regression, resulting in a model to evaluate the flare operations and the brake application profile effect on the remaining distance to the end of the runway, used as a reference to classify the landing as acceptable or not. The present application of the FRAM-FDM assesses the operational risk of a sample fleet in overrunning the runway during landing, highlighting the brake pedal application profile as the most relevant contributor. The model improves the knowledge about the system behaviour, being useful to direct flight crew training.
跑道超限(RO)是指飞机滚出跑道尽头的结果,是航空中最常发生的事故类型之一。跑道超限的风险来自其前兆的协同效应,如不稳定的进近、长时间着陆和减速装置使用不当。为了分析这一复杂的社会技术系统,目前的工作提出了一种定制的功能共振分析方法,称为 "FRAM-FDM",因为传统的风险和安全评估技术无法识别系统本身各个功能方面之间的相互作用和耦合,特别是在人和组织部分。从根本上说,FRAM-FDM 是传统 FRAM 与飞行数据监控(FDM)技术的结合,用于量化飞行机组人员在执行所需活动(即着陆)时的表现变异性。在此建议中,这些变异性(即 FRAM 功能方面)通过逻辑回归的附加值进行汇总,从而形成一个模型,用于评估耀斑操作和制动应用轮廓对跑道末端剩余距离的影响,并作为将着陆划分为可接受与否的参考。本次应用的 FRAM-FDM 评估了样本机队在着陆时冲出跑道的运行风险,突出强调了制动踏板应用曲线是最相关的因素。该模型提高了对系统行为的认识,有助于指导飞行机组人员的培训。
{"title":"A novel approach to runway overrun risk assessment using FRAM and flight data monitoring","authors":"C. Reiser, E. Villani, M. Machado Cardoso-Junior","doi":"10.1017/aer.2024.37","DOIUrl":"https://doi.org/10.1017/aer.2024.37","url":null,"abstract":"\u0000 Runway overruns (ROs) are the result of an aircraft rolling beyond the end of a runway, which is one of the accident’s types that most frequently occurs on aviation. The risk of an RO arises from the synergistic effect among its precursors, such as unstable approaches, long touchdowns and inadequate use of deceleration devices. To analyse this complex socio-technical system, the current work proposes a customised functional resonance analysis method, called FRAM-FDM, as traditional techniques of risk and safety assessment do not identify the interactions and couplings between the various functional aspects of the system itself, especially regarding human and organisational components. Basically, FRAM-FDM is the coupling of a traditional FRAM with flight data monitoring (FDM) techniques, used here to quantify the variabilities of the flight crew performance while executing the required activity (i.e. the landing). In this proposal, these variabilities (i.e. the FRAM functions aspects) are aggregated by the addend of a logistic regression, resulting in a model to evaluate the flare operations and the brake application profile effect on the remaining distance to the end of the runway, used as a reference to classify the landing as acceptable or not. The present application of the FRAM-FDM assesses the operational risk of a sample fleet in overrunning the runway during landing, highlighting the brake pedal application profile as the most relevant contributor. The model improves the knowledge about the system behaviour, being useful to direct flight crew training.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"4 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141119620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The RAeS 2023 written paper prizes","authors":"Wayne J. Davis","doi":"10.1017/aer.2024.25","DOIUrl":"https://doi.org/10.1017/aer.2024.25","url":null,"abstract":"","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"73 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141121752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The BLI (boundary layer ingestion) concept for propulsion seeks to improve the energy efficiency of aircraft propulsion. This is achieved by accelerating low momentum flow ingested from boundary layers and wakes developed over the fuselage through the fan. A major challenge that needs to be overcome to realise the benefits is that the fan needs to work efficiently in distorted flow. Understanding the effects of distortion on the aerodynamic performance and the distortion transfer through the fan is therefore essential to future designs. A BLI fan, designed at reduced scale, is used for analytic modelling and experiments in a rig designed for this purpose. The test rig replicates BLI conditions for a fan installed at the aircraft tail cone. An unsteady model that includes all blades and vanes of the fan, as well as the nacelle and the by-pass duct of the test rig is used for CFD (computational fluid dynamics) simulations. Test results are used to confirm that the CFD model is representative of the aerodynamics of the fan. The tests are conducted using varying fan operating conditions but also tests with an added distortion screen. Analysis results are then used to investigate the effects of distortion on the fan efficiency, as well as on the overall efficiency. The fan efficiency is found to be moderately decreased depending on the level of and extent of inlet circumferential distortion. In terms of overall energy efficiency, a net improvement over a similar fan in clean inlet flow is found.
用于推进的 BLI(边界层摄入)概念旨在提高飞机推进的能效。其方法是通过风扇加速从边界层摄入的低动量气流和机身上形成的气流。要实现这些优势,需要克服的一个主要挑战是风扇需要在扭曲的气流中高效工作。因此,了解畸变对空气动力性能的影响以及通过风扇的畸变传递对未来的设计至关重要。在为此目的设计的试验台架上,使用按缩小比例设计的 BLI 风机进行分析建模和实验。该试验台复制了安装在飞机尾锥的风扇的 BLI 条件。在 CFD(计算流体动力学)模拟中使用了一个非稳定模型,其中包括风扇的所有叶片和叶片,以及短舱和试验台的旁通管道。测试结果用于确认 CFD 模型是否能代表风机的空气动力学特性。测试使用了不同的风机运行条件,但也使用了附加的变形筛网。分析结果用于研究变形对风扇效率和整体效率的影响。结果发现,风扇效率会根据进风口圆周变形的程度和范围而适度降低。就整体能效而言,与清洁进气流中的类似风机相比,该风机的能效有了净提高。
{"title":"Effects of distortion on a BLI fan","authors":"H. Mårtensson, F. Rasimarzabadi","doi":"10.1017/aer.2024.42","DOIUrl":"https://doi.org/10.1017/aer.2024.42","url":null,"abstract":"\u0000 The BLI (boundary layer ingestion) concept for propulsion seeks to improve the energy efficiency of aircraft propulsion. This is achieved by accelerating low momentum flow ingested from boundary layers and wakes developed over the fuselage through the fan. A major challenge that needs to be overcome to realise the benefits is that the fan needs to work efficiently in distorted flow. Understanding the effects of distortion on the aerodynamic performance and the distortion transfer through the fan is therefore essential to future designs. A BLI fan, designed at reduced scale, is used for analytic modelling and experiments in a rig designed for this purpose. The test rig replicates BLI conditions for a fan installed at the aircraft tail cone. An unsteady model that includes all blades and vanes of the fan, as well as the nacelle and the by-pass duct of the test rig is used for CFD (computational fluid dynamics) simulations. Test results are used to confirm that the CFD model is representative of the aerodynamics of the fan. The tests are conducted using varying fan operating conditions but also tests with an added distortion screen. Analysis results are then used to investigate the effects of distortion on the fan efficiency, as well as on the overall efficiency. The fan efficiency is found to be moderately decreased depending on the level of and extent of inlet circumferential distortion. In terms of overall energy efficiency, a net improvement over a similar fan in clean inlet flow is found.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":" 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140994393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water vapour and particles in aero engine exhaust can give rise to condensation trails (contrails) in the wake of aircrafts, and recent studies suggest that persistent contrails and contrail cirrus account for circa 50% of the total aviation-derived radiative forcing (RF). The Schmidt-Appleman criterion is widely used to qualitatively predict the formation of contrails. The criterion indicates that the formation of contrails is affected by both aero engine exhaust and ambient air conditions and can therefore provide the theoretical basis to devise contrail mitigation strategies and further allows quantitative assessment of these strategies. This work focuses on water extraction from the aircraft engine exhaust for contrail mitigation. The fuel water emission index ( ${rm{E}}{{rm{I}}_{{{rm{H}}_2}{rm{O}}}}$ ) is one of the key factors that determines whether persistent contrails form or not. It indicates the amount of water produced for every kg of fuel burnt. Research has indicated that water extraction from the exhaust of the aero engine has been considered for Nitrogen oxides (NOx) reduction, but not for contrail mitigation. Assuming that water extraction is indeed possible, the emphasis of this work will therefore be on understanding how much water is needed to be extracted for contrail mitigation depending on the altitude and the relative humidity (RH), with the aim to carry out a meaningful study on the mitigation of persistent contrails and contrail cirrus to enable a fast and considerable reduction in aviation-derived RF.
{"title":"Water extraction in aero gas turbines for contrail mitigation","authors":"X. Gao, A. Isoldi, D. Nalianda, T. Nikolaidis","doi":"10.1017/aer.2024.22","DOIUrl":"https://doi.org/10.1017/aer.2024.22","url":null,"abstract":"\u0000 Water vapour and particles in aero engine exhaust can give rise to condensation trails (contrails) in the wake of aircrafts, and recent studies suggest that persistent contrails and contrail cirrus account for circa 50% of the total aviation-derived radiative forcing (RF). The Schmidt-Appleman criterion is widely used to qualitatively predict the formation of contrails. The criterion indicates that the formation of contrails is affected by both aero engine exhaust and ambient air conditions and can therefore provide the theoretical basis to devise contrail mitigation strategies and further allows quantitative assessment of these strategies. This work focuses on water extraction from the aircraft engine exhaust for contrail mitigation. The fuel water emission index (\u0000 \u0000 \u0000 \u0000${rm{E}}{{rm{I}}_{{{rm{H}}_2}{rm{O}}}}$\u0000\u0000 \u0000 ) is one of the key factors that determines whether persistent contrails form or not. It indicates the amount of water produced for every kg of fuel burnt. Research has indicated that water extraction from the exhaust of the aero engine has been considered for Nitrogen oxides (NOx) reduction, but not for contrail mitigation. Assuming that water extraction is indeed possible, the emphasis of this work will therefore be on understanding how much water is needed to be extracted for contrail mitigation depending on the altitude and the relative humidity (RH), with the aim to carry out a meaningful study on the mitigation of persistent contrails and contrail cirrus to enable a fast and considerable reduction in aviation-derived RF.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":" 25","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140995606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Feng, S. Liu, X. Wanyan, Y. Dang, Z. Wang, C. Qian
The purpose of this study was to explore the electroencephalogram (EEG) features sensitive to situation awareness (SA) and then classify SA levels. Forty-eight participants were recruited to complete an SA standard test based on the multi-attribute task battery (MATB) II, and the corresponding EEG data and situation awareness global assessment technology (SAGAT) scores were recorded. The population with the top 25% of SAGAT scores was selected as the high-SA level (HSL) group, and the bottom 25% was the low-SA level (LSL) group. The results showed that (1) for the relative power of $beta$ 1 (16–20Hz), $beta$ 2 (20–24Hz) and $beta$ 3 (24–30Hz), repeated measures analysis of variance (ANOVA) in three brain regions (Central Central-Parietal, and Parietal) × three brain lateralities (left, midline, and right) × two SA groups (HSL and LSL) showed a significant main effect for SA groups; post hoc comparisons revealed that compared with LSL, the above features of HSL were higher. (2) for most ratio features associated with $beta$ 1 ∼ $beta$ 3, ANOVA also revealed a main effect for SA groups. (3) EEG features sensitive to SA were selected to classify SA levels with small-sample data based on the general supervised machine learning classifiers. Five-fold cross-validation results showed that among the models with easy interpretability, logistic regression (LR) and decision tree (DT) presented the highest accuracy (both 92%), while among the models with hard interpretability, the accuracy of random forest (RF) was 88.8%, followed by an artificial neural network (ANN) of 84%. The above results suggested that (1) the relative power of $beta$ 1 ∼ $beta$ 3 and their associated ratios were sensitive to changes in SA levels; (2) the general supervised machine learning models all exhibited good accuracy (greater than 75%); and (3) furthermore, LR and DT are recommended by combining the interpretability and accuracy of the models.
本研究旨在探索对情境意识(SA)敏感的脑电图(EEG)特征,然后对SA水平进行分类。研究人员招募了 48 名参与者,完成了基于多属性任务电池(MATB)II 的 SA 标准测试,并记录了相应的脑电图数据和情境意识全球评估技术(SAGAT)得分。SAGAT 分数排名前 25% 的人群被选为高 SA 水平(HSL)组,排名后 25% 的人群被选为低 SA 水平(LSL)组。结果表明:(1)对于$beta$1(16-20Hz)、$beta$2(20-24Hz)和$beta$3(24-30Hz)的相对功率,在三个脑区(中央-顶叶和顶叶)×三个脑侧线(左侧、中线和右侧)×两个SA组(HSL和LSL)的重复测量方差分析(ANOVA)显示,SA组的主效应显著;事后比较显示,与LSL相比,HSL的上述特征更高。(2)对于与 1 ∼ 3 美元贝塔相关的大多数比率特征,方差分析也显示出 SA 组的主效应。(3) 基于一般监督机器学习分类器,选择对 SA 敏感的脑电特征,用小样本数据对 SA 水平进行分类。五倍交叉验证结果显示,在易解释性模型中,逻辑回归(LR)和决策树(DT)的准确率最高(均为 92%),而在难解释性模型中,随机森林(RF)的准确率为 88.8%,其次是人工神经网络(ANN),准确率为 84%。上述结果表明:(1)$beta$ 1 ∼ $beta$ 3 的相对功率及其相关比率对 SA 水平的变化很敏感;(2)一般监督机器学习模型都表现出良好的准确性(大于 75%);(3)此外,综合模型的可解释性和准确性,推荐使用 LR 和 DT。
{"title":"-wave-based exploration of sensitive EEG features and classification of situation awareness","authors":"C. Feng, S. Liu, X. Wanyan, Y. Dang, Z. Wang, C. Qian","doi":"10.1017/aer.2024.36","DOIUrl":"https://doi.org/10.1017/aer.2024.36","url":null,"abstract":"\u0000 The purpose of this study was to explore the electroencephalogram (EEG) features sensitive to situation awareness (SA) and then classify SA levels. Forty-eight participants were recruited to complete an SA standard test based on the multi-attribute task battery (MATB) II, and the corresponding EEG data and situation awareness global assessment technology (SAGAT) scores were recorded. The population with the top 25% of SAGAT scores was selected as the high-SA level (HSL) group, and the bottom 25% was the low-SA level (LSL) group. The results showed that (1) for the relative power of \u0000 \u0000 \u0000 \u0000$beta$\u0000\u0000 \u0000 1 (16–20Hz), \u0000 \u0000 \u0000 \u0000$beta$\u0000\u0000 \u0000 2 (20–24Hz) and \u0000 \u0000 \u0000 \u0000$beta$\u0000\u0000 \u0000 3 (24–30Hz), repeated measures analysis of variance (ANOVA) in three brain regions (Central Central-Parietal, and Parietal) × three brain lateralities (left, midline, and right) × two SA groups (HSL and LSL) showed a significant main effect for SA groups; post hoc comparisons revealed that compared with LSL, the above features of HSL were higher. (2) for most ratio features associated with \u0000 \u0000 \u0000 \u0000$beta$\u0000\u0000 \u0000 1 ∼ \u0000 \u0000 \u0000 \u0000$beta$\u0000\u0000 \u0000 3, ANOVA also revealed a main effect for SA groups. (3) EEG features sensitive to SA were selected to classify SA levels with small-sample data based on the general supervised machine learning classifiers. Five-fold cross-validation results showed that among the models with easy interpretability, logistic regression (LR) and decision tree (DT) presented the highest accuracy (both 92%), while among the models with hard interpretability, the accuracy of random forest (RF) was 88.8%, followed by an artificial neural network (ANN) of 84%. The above results suggested that (1) the relative power of \u0000 \u0000 \u0000 \u0000$beta$\u0000\u0000 \u0000 1 ∼ \u0000 \u0000 \u0000 \u0000$beta$\u0000\u0000 \u0000 3 and their associated ratios were sensitive to changes in SA levels; (2) the general supervised machine learning models all exhibited good accuracy (greater than 75%); and (3) furthermore, LR and DT are recommended by combining the interpretability and accuracy of the models.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":" 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140994773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}