{"title":"Numerical Investigation of Thermal Energy Storage Systems for Collective Heating of Buildings","authors":"Emad Ali, A. Ajbar, Bilal Lamrani","doi":"10.3390/buildings14010141","DOIUrl":null,"url":null,"abstract":"This study aims to investigate and identify the most effective thermal energy storage (TES) system configuration for the collective heating of buildings. It compares three TES technologies, i.e., sensible, latent, and cascade latent shell and tube storage, and examines their respective performances. A fast and accurate lumped thermal dynamic model to efficiently simulate TES system performances under different operation conditions is developed. The validation of this model’s accuracy is achieved by aligning numerical findings with data from prior experimental studies. Key findings indicated that the latent and cascade latent shell and tube storage systems demonstrate superior thermal energy storage capacities compared to the sensible configuration. Using a single-phase change material (PCM) tank increases the duration of constant thermal power storage by about 50%, and using a cascade PCM tank further enhances this duration by approximately 65% compared to the sensible TES case. Moreover, the study revealed that adjusting the PCM composition within the cascade TES significantly influenced both thermal power storage durations and pumping energy consumption. In summary, the recommended cascade PCM configuration for collective heating of buildings offers a balanced solution, ensuring prolonged stable thermal power production, elevated HTF outlet temperatures, and improved energy efficiency, presenting promising prospects for enhancing TES systems in district heating applications.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"63 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010141","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to investigate and identify the most effective thermal energy storage (TES) system configuration for the collective heating of buildings. It compares three TES technologies, i.e., sensible, latent, and cascade latent shell and tube storage, and examines their respective performances. A fast and accurate lumped thermal dynamic model to efficiently simulate TES system performances under different operation conditions is developed. The validation of this model’s accuracy is achieved by aligning numerical findings with data from prior experimental studies. Key findings indicated that the latent and cascade latent shell and tube storage systems demonstrate superior thermal energy storage capacities compared to the sensible configuration. Using a single-phase change material (PCM) tank increases the duration of constant thermal power storage by about 50%, and using a cascade PCM tank further enhances this duration by approximately 65% compared to the sensible TES case. Moreover, the study revealed that adjusting the PCM composition within the cascade TES significantly influenced both thermal power storage durations and pumping energy consumption. In summary, the recommended cascade PCM configuration for collective heating of buildings offers a balanced solution, ensuring prolonged stable thermal power production, elevated HTF outlet temperatures, and improved energy efficiency, presenting promising prospects for enhancing TES systems in district heating applications.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates