Nonlinear Performance of Steel Tube Tower in Ultra-High Voltage Transmission Lines under Wind Loads

IF 3.1 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Buildings Pub Date : 2024-01-05 DOI:10.3390/buildings14010140
Ruiqi Li, Liangjie Qi, Yao-Rong Dong, Hui Wang
{"title":"Nonlinear Performance of Steel Tube Tower in Ultra-High Voltage Transmission Lines under Wind Loads","authors":"Ruiqi Li, Liangjie Qi, Yao-Rong Dong, Hui Wang","doi":"10.3390/buildings14010140","DOIUrl":null,"url":null,"abstract":"As complex, statically indeterminate structures, transmission towers are subject to complex forces and are usually simplified into truss structures that only consider the effects of axial force. When the load and deformation of a tower are small, it is reasonable to carry out analysis according to the linear elasticity theory. However, the height of an ultra-high voltage (UHV) transmission tower is significantly large, meaning that the calculation result according to the current elastic analysis method often has a large deviation from the actual stress of the structure. With the influence of the bending moment at the end of the member, a numerical model is established considering the influence of geometric nonlinearity and material nonlinearity in this paper. The stress distribution characteristics and development law of UHV transmission towers in linear and nonlinear stress states are analyzed and studied. The real tower test and elastoplastic ultimate bearing capacity analysis show that the elastoplastic analysis is closer to the actual tower. The UHV steel pipe tower designed according to the linear elasticity and small deformation theory has a large safety margin under the design load, resulting in a significant waste of materials. Under the action of heavy load, the tower exhibits strong nonlinearity, and the influence of geometric and material nonlinear factors should be fully considered when designing the structural components in UHV transmission towers.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"45 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010140","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As complex, statically indeterminate structures, transmission towers are subject to complex forces and are usually simplified into truss structures that only consider the effects of axial force. When the load and deformation of a tower are small, it is reasonable to carry out analysis according to the linear elasticity theory. However, the height of an ultra-high voltage (UHV) transmission tower is significantly large, meaning that the calculation result according to the current elastic analysis method often has a large deviation from the actual stress of the structure. With the influence of the bending moment at the end of the member, a numerical model is established considering the influence of geometric nonlinearity and material nonlinearity in this paper. The stress distribution characteristics and development law of UHV transmission towers in linear and nonlinear stress states are analyzed and studied. The real tower test and elastoplastic ultimate bearing capacity analysis show that the elastoplastic analysis is closer to the actual tower. The UHV steel pipe tower designed according to the linear elasticity and small deformation theory has a large safety margin under the design load, resulting in a significant waste of materials. Under the action of heavy load, the tower exhibits strong nonlinearity, and the influence of geometric and material nonlinear factors should be fully considered when designing the structural components in UHV transmission towers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风荷载下超高压输电线路中钢管塔的非线性性能
作为复杂的静力不确定结构,输电塔受力复杂,通常被简化为桁架结构,只考虑轴向力的影响。当铁塔的载荷和变形较小时,根据线性弹性理论进行分析是合理的。然而,特高压输电塔的高度很大,这意味着按照目前的弹性分析方法得出的计算结果往往与结构的实际应力有很大偏差。考虑到构件端部弯矩的影响,本文建立了一个考虑几何非线性和材料非线性影响的数值模型。分析和研究了特高压输电塔在线性和非线性应力状态下的应力分布特征和发展规律。实际铁塔试验和弹塑性极限承载力分析表明,弹塑性分析更接近实际铁塔。根据线弹性和小变形理论设计的特高压钢管塔在设计荷载下的安全裕度较大,造成材料的大量浪费。在重载作用下,铁塔表现出很强的非线性,在设计特高压输电铁塔的结构部件时应充分考虑几何和材料非线性因素的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Buildings
Buildings Multiple-
CiteScore
3.40
自引率
26.30%
发文量
1883
审稿时长
11 weeks
期刊介绍: BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates
期刊最新文献
Urban Building Energy Modeling to Support Climate-Sensitive Planning in the Suburban Areas of Santiago de Chile Predicting the Compressive Strength of Environmentally Friendly Concrete Using Multiple Machine Learning Algorithms Investigation on Seismic Behavior of Prestressed Steel Strand Composite Reinforced High-Strength Concrete Column A Systematic Literature Review on Transit-Based Evacuation Planning in Emergency Logistics Management: Optimisation and Modelling Approaches Analytical Study of Structural Conformation and Prestressing State of Drum-Shaped Honeycomb Quad-Strut Cable Dome Structure with Different Calculation Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1