{"title":"Nonlinear Performance of Steel Tube Tower in Ultra-High Voltage Transmission Lines under Wind Loads","authors":"Ruiqi Li, Liangjie Qi, Yao-Rong Dong, Hui Wang","doi":"10.3390/buildings14010140","DOIUrl":null,"url":null,"abstract":"As complex, statically indeterminate structures, transmission towers are subject to complex forces and are usually simplified into truss structures that only consider the effects of axial force. When the load and deformation of a tower are small, it is reasonable to carry out analysis according to the linear elasticity theory. However, the height of an ultra-high voltage (UHV) transmission tower is significantly large, meaning that the calculation result according to the current elastic analysis method often has a large deviation from the actual stress of the structure. With the influence of the bending moment at the end of the member, a numerical model is established considering the influence of geometric nonlinearity and material nonlinearity in this paper. The stress distribution characteristics and development law of UHV transmission towers in linear and nonlinear stress states are analyzed and studied. The real tower test and elastoplastic ultimate bearing capacity analysis show that the elastoplastic analysis is closer to the actual tower. The UHV steel pipe tower designed according to the linear elasticity and small deformation theory has a large safety margin under the design load, resulting in a significant waste of materials. Under the action of heavy load, the tower exhibits strong nonlinearity, and the influence of geometric and material nonlinear factors should be fully considered when designing the structural components in UHV transmission towers.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"45 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010140","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As complex, statically indeterminate structures, transmission towers are subject to complex forces and are usually simplified into truss structures that only consider the effects of axial force. When the load and deformation of a tower are small, it is reasonable to carry out analysis according to the linear elasticity theory. However, the height of an ultra-high voltage (UHV) transmission tower is significantly large, meaning that the calculation result according to the current elastic analysis method often has a large deviation from the actual stress of the structure. With the influence of the bending moment at the end of the member, a numerical model is established considering the influence of geometric nonlinearity and material nonlinearity in this paper. The stress distribution characteristics and development law of UHV transmission towers in linear and nonlinear stress states are analyzed and studied. The real tower test and elastoplastic ultimate bearing capacity analysis show that the elastoplastic analysis is closer to the actual tower. The UHV steel pipe tower designed according to the linear elasticity and small deformation theory has a large safety margin under the design load, resulting in a significant waste of materials. Under the action of heavy load, the tower exhibits strong nonlinearity, and the influence of geometric and material nonlinear factors should be fully considered when designing the structural components in UHV transmission towers.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates