State of health estimation for lithium-ion battery based on particle swarm optimization algorithm and extreme learning machine

Kui Chen , Jiali Li , Kai Liu , Changshan Bai , Jiamin Zhu , Guoqiang Gao , Guangning Wu , Salah Laghrouche
{"title":"State of health estimation for lithium-ion battery based on particle swarm optimization algorithm and extreme learning machine","authors":"Kui Chen ,&nbsp;Jiali Li ,&nbsp;Kai Liu ,&nbsp;Changshan Bai ,&nbsp;Jiamin Zhu ,&nbsp;Guoqiang Gao ,&nbsp;Guangning Wu ,&nbsp;Salah Laghrouche","doi":"10.1016/j.geits.2024.100151","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-ion battery State of Health (SOH) estimation is an essential issue in battery management systems. In order to better estimate battery SOH, Extreme Learning Machine (ELM) is used to establish a model to estimate lithium-ion battery SOH. The Swarm Optimization algorithm (PSO) is used to automatically adjust and optimize the parameters of ELM to improve estimation accuracy. Firstly, collect cyclic aging data of the battery and extract five characteristic quantities related to battery capacity from the battery charging curve and increment capacity curve. Use Grey Relation Analysis (GRA) method to analyze the correlation between battery capacity and five characteristic quantities. Then, an ELM is used to build the capacity estimation model of the lithium-ion battery based on five characteristics, and a PSO is introduced to optimize the parameters of the capacity estimation model. The proposed method is validated by the degradation experiment of the lithium-ion battery under different conditions. The results show that the battery capacity estimation model based on ELM and PSO has better accuracy and stability in capacity estimation, and the average absolute percentage error is less than 1%.</p></div>","PeriodicalId":100596,"journal":{"name":"Green Energy and Intelligent Transportation","volume":"3 1","pages":"Article 100151"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773153724000033/pdfft?md5=ad2fa31d5c48320930ba2e666cec2038&pid=1-s2.0-S2773153724000033-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Intelligent Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773153724000033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion battery State of Health (SOH) estimation is an essential issue in battery management systems. In order to better estimate battery SOH, Extreme Learning Machine (ELM) is used to establish a model to estimate lithium-ion battery SOH. The Swarm Optimization algorithm (PSO) is used to automatically adjust and optimize the parameters of ELM to improve estimation accuracy. Firstly, collect cyclic aging data of the battery and extract five characteristic quantities related to battery capacity from the battery charging curve and increment capacity curve. Use Grey Relation Analysis (GRA) method to analyze the correlation between battery capacity and five characteristic quantities. Then, an ELM is used to build the capacity estimation model of the lithium-ion battery based on five characteristics, and a PSO is introduced to optimize the parameters of the capacity estimation model. The proposed method is validated by the degradation experiment of the lithium-ion battery under different conditions. The results show that the battery capacity estimation model based on ELM and PSO has better accuracy and stability in capacity estimation, and the average absolute percentage error is less than 1%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群优化算法和极端学习机的锂离子电池健康状况评估
锂离子电池健康状况(SOH)估算是电池管理系统中的一个重要问题。为了更好地估算电池的健康状况,极限学习机(ELM)被用来建立一个估算锂离子电池健康状况的模型。利用蜂群优化算法(PSO)自动调整和优化 ELM 的参数,以提高估算精度。首先,收集电池的循环老化数据,并从电池充电曲线和增容曲线中提取与电池容量相关的五个特征量。使用灰色关系分析法(GRA)分析电池容量与五个特征量之间的相关性。然后,使用 ELM 建立基于五个特征量的锂离子电池容量估计模型,并引入 PSO 优化容量估计模型的参数。通过锂离子电池在不同条件下的降解实验验证了所提出的方法。结果表明,基于 ELM 和 PSO 的电池容量估计模型具有更好的容量估计精度和稳定性,平均绝对百分比误差小于 1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
0
期刊最新文献
Intelligent lithium plating detection and prediction method for Li-ion batteries based on random forest model Mixed ion-electron conducting LixAg alloy anode enabling stable Li plating/stripping in solid-state batteries via enhanced Li diffusion kinetic Radial distribution systems performance enhancement through RE (Renewable Energy) integration and comprehensive contingency ranking analysis State of charge estimation of lithium-ion battery based on state of temperature estimation using weight clustered-convolutional neural network-long short-term memory Unraveling mechanisms of electrolyte wetting process in three-dimensional electrode structures: Insights from realistic architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1