Intelligent lithium plating detection and prediction method for Li-ion batteries based on random forest model

Guangying Zhu , Jianguo Chen , Xuyang Liu , Tao Sun , Xin Lai , Yuejiu Zheng , Yue Guo , Rohit Bhagat
{"title":"Intelligent lithium plating detection and prediction method for Li-ion batteries based on random forest model","authors":"Guangying Zhu ,&nbsp;Jianguo Chen ,&nbsp;Xuyang Liu ,&nbsp;Tao Sun ,&nbsp;Xin Lai ,&nbsp;Yuejiu Zheng ,&nbsp;Yue Guo ,&nbsp;Rohit Bhagat","doi":"10.1016/j.geits.2024.100167","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium plating in lithium-ion batteries (LIBs) is one of the main causes of safety accidents in electric vehicles (EVs). The study of intelligent machine learning-based lithium plating detection and warning algorithms for LIBs is of great importance. Therefore, this paper proposes an intelligent lithium plating detection and early warning method for LIBs based on the random forest model. This method can accurately detect lithium plating during the charging process of LIBs, and play an early warning role according to the detection results. First, pulse charging experiments of LIBs, including normal and lithium plating charging tests, were completed and validated using in situ characterization methods. Second, the normalized internal resistance from the pulse charging test is used to detect lithium plating in LIBs. Third, a lithium plating feature extraction method is proposed to address the lack of useful lithium plating information for LIBs during the charging process. Finally, the Random Forest machine learning technique is used to classify and predict the lithium plating of LIBs. The model validation results show that the detection accuracy of lithium plating is greater than 97.2%. This is of significance for the study of intelligent lithium plating detection algorithms for LIBs.</div></div>","PeriodicalId":100596,"journal":{"name":"Green Energy and Intelligent Transportation","volume":"4 1","pages":"Article 100167"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Intelligent Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773153724000197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium plating in lithium-ion batteries (LIBs) is one of the main causes of safety accidents in electric vehicles (EVs). The study of intelligent machine learning-based lithium plating detection and warning algorithms for LIBs is of great importance. Therefore, this paper proposes an intelligent lithium plating detection and early warning method for LIBs based on the random forest model. This method can accurately detect lithium plating during the charging process of LIBs, and play an early warning role according to the detection results. First, pulse charging experiments of LIBs, including normal and lithium plating charging tests, were completed and validated using in situ characterization methods. Second, the normalized internal resistance from the pulse charging test is used to detect lithium plating in LIBs. Third, a lithium plating feature extraction method is proposed to address the lack of useful lithium plating information for LIBs during the charging process. Finally, the Random Forest machine learning technique is used to classify and predict the lithium plating of LIBs. The model validation results show that the detection accuracy of lithium plating is greater than 97.2%. This is of significance for the study of intelligent lithium plating detection algorithms for LIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机森林模型的锂离子电池智能镀锂检测和预测方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
0
期刊最新文献
Intelligent lithium plating detection and prediction method for Li-ion batteries based on random forest model Mixed ion-electron conducting LixAg alloy anode enabling stable Li plating/stripping in solid-state batteries via enhanced Li diffusion kinetic Radial distribution systems performance enhancement through RE (Renewable Energy) integration and comprehensive contingency ranking analysis State of charge estimation of lithium-ion battery based on state of temperature estimation using weight clustered-convolutional neural network-long short-term memory Unraveling mechanisms of electrolyte wetting process in three-dimensional electrode structures: Insights from realistic architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1