Tong Zhang , Andrew T. Hale , Shuling Guo , John D. York
{"title":"Coordinated inositide lipid-phosphatase activities of synaptojanin modulates actin cytoskeleton organization","authors":"Tong Zhang , Andrew T. Hale , Shuling Guo , John D. York","doi":"10.1016/j.jbior.2023.101012","DOIUrl":null,"url":null,"abstract":"<div><p>Synaptojanin proteins are evolutionarily conserved regulators of vesicle transport and membrane homeostasis. Disruption of synaptojanin function has been implicated in a wide range of neurological disorders. Synaptojanins act as dual-functional lipid phosphatases capable of hydrolyzing a variety of phosphoinositides (PIPs) through autonomous <em>SAC1</em>-like PIP 4-phosphatase and PIP<sub>2</sub> 5-phosphatase domains. The rarity of an evolutionary configuration of tethering two distinct enzyme activities in a single protein prompted us to investigate their individual and combined roles in budding yeast. Both PIP and PIP<sub>2</sub> phosphatase activities are encoded by multiple gene products and are independently essential for cell viability. In contrast, we observed that the synaptojanin proteins utilized both lipid-phosphatase activities to properly coordinate polarized distribution of actin during the cell cycle. Expression of each activity untethered (<em>in trans</em>) failed to properly reconstitute the basal actin regulatory activity; whereas tethering (<em>in cis</em>), even through synthetic linkers, was sufficient to complement these defects. Studies of chimeric proteins harboring PIP and PIP<sub>2</sub> phosphatase domains from a variety of gene products indicate synaptojanin proteins have highly specialized activities and that the length of the linker between the lipid-phosphatase domains is critical for actin regulatory activity. Our data are consistent with synaptojanin possessing a strict requirement for both two-domain configuration for some but not all functions and provide mechanistic insights into a coordinated role of tethering distinct lipid-phosphatase activities.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"91 ","pages":"Article 101012"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212492623000581/pdfft?md5=9765a94c0e2c924c2b070427e61ef1c8&pid=1-s2.0-S2212492623000581-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biological regulation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212492623000581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Synaptojanin proteins are evolutionarily conserved regulators of vesicle transport and membrane homeostasis. Disruption of synaptojanin function has been implicated in a wide range of neurological disorders. Synaptojanins act as dual-functional lipid phosphatases capable of hydrolyzing a variety of phosphoinositides (PIPs) through autonomous SAC1-like PIP 4-phosphatase and PIP2 5-phosphatase domains. The rarity of an evolutionary configuration of tethering two distinct enzyme activities in a single protein prompted us to investigate their individual and combined roles in budding yeast. Both PIP and PIP2 phosphatase activities are encoded by multiple gene products and are independently essential for cell viability. In contrast, we observed that the synaptojanin proteins utilized both lipid-phosphatase activities to properly coordinate polarized distribution of actin during the cell cycle. Expression of each activity untethered (in trans) failed to properly reconstitute the basal actin regulatory activity; whereas tethering (in cis), even through synthetic linkers, was sufficient to complement these defects. Studies of chimeric proteins harboring PIP and PIP2 phosphatase domains from a variety of gene products indicate synaptojanin proteins have highly specialized activities and that the length of the linker between the lipid-phosphatase domains is critical for actin regulatory activity. Our data are consistent with synaptojanin possessing a strict requirement for both two-domain configuration for some but not all functions and provide mechanistic insights into a coordinated role of tethering distinct lipid-phosphatase activities.