Customized design and biomechanical property analysis of 3D-printed tantalum intervertebral cages

IF 1 4区 医学 Q4 ENGINEERING, BIOMEDICAL Bio-medical materials and engineering Pub Date : 2024-01-10 DOI:10.3233/bme-230154
Yutao Zhang, Shu Du, Wurikaixi Aiyiti, Yong Teng, Ru Jia, Houfeng Jiang
{"title":"Customized design and biomechanical property analysis of 3D-printed tantalum intervertebral cages","authors":"Yutao Zhang, Shu Du, Wurikaixi Aiyiti, Yong Teng, Ru Jia, Houfeng Jiang","doi":"10.3233/bme-230154","DOIUrl":null,"url":null,"abstract":"BACKGROUND:Intervertebral cages used in clinical applications were often general products with standard specifications, which were challenging to match with the cervical vertebra and prone to cause stress shielding and subsidence. OBJECTIVE:To design and fabricate customized tantalum (Ta) intervertebral fusion cages that meets the biomechanical requirements of the cervical segment. METHODS:The lattice intervertebral cages were customized designed and fabricated by the selective laser melting. The joint and muscle forces of the cervical segment under different movements were analyzed using reverse dynamics method. The stress characteristics of cage, plate, screws and vertebral endplate were analyzed by finite element analysis. The fluid flow behaviors and permeability of three lattice structures were simulated by computational fluid dynamics. Compression tests were executed to investigate the biomechanical properties of the cages. RESULTS:Compared with the solid cages, the lattice-filled structures significantly reduced the stress of cages and anterior fixation system. In comparison to the octahedroid and quaddiametral lattice-filled cages, the bitriangle lattice-filled cage had a lower stress shielding rate, higher permeability, and superior subsidence resistance ability. CONCLUSION:The inverse dynamics simulation combined with finite element analysis is an effective method to investigate the biomechanical properties of the cervical vertebra during movements.","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/bme-230154","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

BACKGROUND:Intervertebral cages used in clinical applications were often general products with standard specifications, which were challenging to match with the cervical vertebra and prone to cause stress shielding and subsidence. OBJECTIVE:To design and fabricate customized tantalum (Ta) intervertebral fusion cages that meets the biomechanical requirements of the cervical segment. METHODS:The lattice intervertebral cages were customized designed and fabricated by the selective laser melting. The joint and muscle forces of the cervical segment under different movements were analyzed using reverse dynamics method. The stress characteristics of cage, plate, screws and vertebral endplate were analyzed by finite element analysis. The fluid flow behaviors and permeability of three lattice structures were simulated by computational fluid dynamics. Compression tests were executed to investigate the biomechanical properties of the cages. RESULTS:Compared with the solid cages, the lattice-filled structures significantly reduced the stress of cages and anterior fixation system. In comparison to the octahedroid and quaddiametral lattice-filled cages, the bitriangle lattice-filled cage had a lower stress shielding rate, higher permeability, and superior subsidence resistance ability. CONCLUSION:The inverse dynamics simulation combined with finite element analysis is an effective method to investigate the biomechanical properties of the cervical vertebra during movements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D 打印钽椎间笼的定制设计和生物力学特性分析
背景:临床应用中使用的椎间融合保持架通常是标准规格的普通产品,与颈椎匹配具有挑战性,容易造成应力屏蔽和下沉。目的:设计和制造符合颈椎段生物力学要求的定制钽(Ta)椎间融合保持架。方法:通过选择性激光熔化技术设计并制造出定制的钽(Ta)椎间融合保持架。采用反向动力学方法分析了不同运动下颈椎节段的关节力和肌肉力。采用有限元分析方法分析了椎体笼、椎板、螺钉和椎体终板的应力特性。通过计算流体动力学模拟了三种晶格结构的流体流动行为和渗透性。通过压缩试验研究了椎体保持架的生物力学特性。结果:与实心保持架相比,格状填充结构大大降低了保持架和前固定系统的应力。与八面体和四面体格状填充保持架相比,位三角形格状填充保持架的应力屏蔽率更低,渗透性更高,抗下沉能力更强。结论:反动力学模拟结合有限元分析是研究颈椎运动时生物力学特性的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bio-medical materials and engineering
Bio-medical materials and engineering 工程技术-材料科学:生物材料
CiteScore
1.80
自引率
0.00%
发文量
73
审稿时长
6 months
期刊介绍: The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.
期刊最新文献
Extract from Falcaria vulgaris loaded with exosomes for the treatment of hypertension in pregnant mice: In vitro and In vivo investigations. Acupuncture navigation method integrated with augmented reality. Assessment of decellularization strategy and biocompatibility testing of full-thickness abdominal wall to produce a tissue-engineered graft. Effect of bioceramic inclusions on gel-cast aliphatic polymer membranes for bone tissue engineering applications: An in vitro study. Promotion of maturation in CDM3-induced embryonic stem cell-derived cardiomyocytes by palmitic acid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1