Widespread fracture movements during a volcano-tectonic unrest: the Reykjanes Peninsula, Iceland, from 2019–2021 TerraSAR-X interferometry

IF 3.6 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Bulletin of Volcanology Pub Date : 2024-01-13 DOI:10.1007/s00445-023-01699-0
Cécile Ducrocq, Thóra Árnadóttir, Páll Einarsson, Sigurjón Jónsson, Vincent Drouin, Halldór Geirsson, Ásta Rut Hjartardóttir
{"title":"Widespread fracture movements during a volcano-tectonic unrest: the Reykjanes Peninsula, Iceland, from 2019–2021 TerraSAR-X interferometry","authors":"Cécile Ducrocq, Thóra Árnadóttir, Páll Einarsson, Sigurjón Jónsson, Vincent Drouin, Halldór Geirsson, Ásta Rut Hjartardóttir","doi":"10.1007/s00445-023-01699-0","DOIUrl":null,"url":null,"abstract":"<p>Tectonic controls on dyke emplacements, eruption dynamics and locations have been observed in multiple volcanic areas worldwide. Mapping of active structures is therefore key for assessing potential tectonic and volcanic hazards in active regions. We used wrapped interferograms from the TerraSAR-X satellite to map active fracture movements over a 2-year period of a volcano-tectonic unrest at the onshore Reykjanes Peninsula plate boundary in SW Iceland. As of 1 December 2023, the unrest has included at least six inflation events and five dyke injections resulting in three eruptions of the Fagradalsfjall volcanic segment. In addition to the deformation associated with the 2019–2021 inflation events and intrusions, the interferograms reveal fracture movements over a wide area surrounding the active plate boundary segment. This first-order mapping of active fractures complements previously mapped structures, as InSAR allows for the detection of subtle ground movements, even in areas where young lava flows cover older structures. Our fracture data therefore fill in some of the apparent voids in previous fracture and fault maps of SW Iceland. Furthermore, our investigation reveals aseismic movement on previously unknown fractures directly beneath the town of Grindavík, as well as a N45<span>\\(^\\circ \\)</span> E striking fracture co-located with the longest lasting volcanic vent of the subsequent 2021 eruption. The mapping method we present in this study is relevant for active volcano-tectonic regions where InSAR can be applied to detect small-scale fracture movements to advance understanding of ongoing unrest and volcano-tectonic hazards.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Volcanology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00445-023-01699-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tectonic controls on dyke emplacements, eruption dynamics and locations have been observed in multiple volcanic areas worldwide. Mapping of active structures is therefore key for assessing potential tectonic and volcanic hazards in active regions. We used wrapped interferograms from the TerraSAR-X satellite to map active fracture movements over a 2-year period of a volcano-tectonic unrest at the onshore Reykjanes Peninsula plate boundary in SW Iceland. As of 1 December 2023, the unrest has included at least six inflation events and five dyke injections resulting in three eruptions of the Fagradalsfjall volcanic segment. In addition to the deformation associated with the 2019–2021 inflation events and intrusions, the interferograms reveal fracture movements over a wide area surrounding the active plate boundary segment. This first-order mapping of active fractures complements previously mapped structures, as InSAR allows for the detection of subtle ground movements, even in areas where young lava flows cover older structures. Our fracture data therefore fill in some of the apparent voids in previous fracture and fault maps of SW Iceland. Furthermore, our investigation reveals aseismic movement on previously unknown fractures directly beneath the town of Grindavík, as well as a N45\(^\circ \) E striking fracture co-located with the longest lasting volcanic vent of the subsequent 2021 eruption. The mapping method we present in this study is relevant for active volcano-tectonic regions where InSAR can be applied to detect small-scale fracture movements to advance understanding of ongoing unrest and volcano-tectonic hazards.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
火山构造动荡期间的大范围断裂运动:2019-2021 年 TerraSAR-X 干涉测量法得出的冰岛雷克雅内斯半岛数据
在全球多个火山地区都观察到了构造对堤坝位置、喷发动态和位置的控制。因此,绘制活跃结构图是评估活跃地区潜在构造和火山危害的关键。我们利用 TerraSAR-X 卫星的包裹干涉图,绘制了冰岛西南部雷克雅未克半岛陆上板块边界火山-构造动荡两年期间的活动断裂运动图。截至 2023 年 12 月 1 日,动荡包括至少六次膨胀事件和五次堤坝喷射,导致 Fagradalsfjall 火山段三次喷发。除了与 2019-2021 年膨胀事件和侵入有关的变形外,干涉图还显示了活跃板块边界段周围大范围的断裂运动。由于 InSAR 能够探测到细微的地面运动,甚至在年轻熔岩流覆盖较老结构的区域也能探测到地面运动,因此这种对活动断裂的一阶测绘补充了之前测绘的结构。因此,我们的断裂数据填补了之前绘制的冰岛西南部断裂和断层图中的一些明显空白。此外,我们的调查还揭示了格林达维克镇正下方以前未知的断裂上的地震运动,以及一条N45(^\circ \)E走向的断裂,该断裂与随后2021年喷发中持续时间最长的火山喷口位于同一位置。我们在这项研究中提出的绘图方法适用于活火山构造地区,在这些地区,InSAR 可用于探测小尺度断裂运动,以促进对持续动荡和火山构造危险的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bulletin of Volcanology
Bulletin of Volcanology 地学-地球科学综合
CiteScore
6.40
自引率
20.00%
发文量
89
审稿时长
4-8 weeks
期刊介绍: Bulletin of Volcanology was founded in 1922, as Bulletin Volcanologique, and is the official journal of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI). The Bulletin of Volcanology publishes papers on volcanoes, their products, their eruptive behavior, and their hazards. Papers aimed at understanding the deeper structure of volcanoes, and the evolution of magmatic systems using geochemical, petrological, and geophysical techniques are also published. Material is published in four sections: Review Articles; Research Articles; Short Scientific Communications; and a Forum that provides for discussion of controversial issues and for comment and reply on previously published Articles and Communications.
期刊最新文献
Blossoming of the Pleistocene volcanism in the Ecuadorian Andes: a review based on new and recent geochronological data From field station to forecast: managing data at the Alaska Volcano Observatory Towards inclusive collaboration in volcanology: guidelines for best-engagement protocols in international collaboration Numerical simulations of the latest caldera-forming eruption of Okmok volcano, Alaska Volcano-tectonic controls on the morphology and volcanic rift zone configuration on Bioko Island (Equatorial Guinea) derived from TanDEM-X data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1