Preparation of Small-Diameter Phenolic-Based CFRP Rods Using Multi-Die Pultrusion

IF 2.3 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Applied Composite Materials Pub Date : 2024-01-12 DOI:10.1007/s10443-023-10193-x
Guannan Li, Junwei Qi, Yuequan Wang, Jiaqi Shi, Rui Jia
{"title":"Preparation of Small-Diameter Phenolic-Based CFRP Rods Using Multi-Die Pultrusion","authors":"Guannan Li,&nbsp;Junwei Qi,&nbsp;Yuequan Wang,&nbsp;Jiaqi Shi,&nbsp;Rui Jia","doi":"10.1007/s10443-023-10193-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a novel multi-die pultrusion system for producing small-diameter phenolic-based CFRP rods. The system consists of multiple short heating dies arranged in series, facilitating the escape of vapor from the die cavities and improving the product quality. The results demonstrate that compared to the traditional dies, the rods produced using the multi-die pultrusion system exhibit higher dimensional stability, and their interlaminar shear strength is mostly above 35 MPa, reaching up to 52 MPa. Compared to the traditional mold, in one instance, its interlaminar shear strength value increased by nearly 71.5%, but in another case, it was only 14.72%. Due to relying solely on one control sample, the results are inconclusive. SEM indicates that the rods produced using the multi-die pultrusion system have fewer voids and better fiber-resin bonding compared to the traditional dies. Additionally, cross-sectional optical microscopy shows that when the pultrusion speed is at or below 0.6 m/min, the impregnation of carbon fibers by phenolic resin is more effective. The proposed multi-die pultrusion system provides a new idea for the production of small-diameter rods.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 3","pages":"1007 - 1029"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-023-10193-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel multi-die pultrusion system for producing small-diameter phenolic-based CFRP rods. The system consists of multiple short heating dies arranged in series, facilitating the escape of vapor from the die cavities and improving the product quality. The results demonstrate that compared to the traditional dies, the rods produced using the multi-die pultrusion system exhibit higher dimensional stability, and their interlaminar shear strength is mostly above 35 MPa, reaching up to 52 MPa. Compared to the traditional mold, in one instance, its interlaminar shear strength value increased by nearly 71.5%, but in another case, it was only 14.72%. Due to relying solely on one control sample, the results are inconclusive. SEM indicates that the rods produced using the multi-die pultrusion system have fewer voids and better fiber-resin bonding compared to the traditional dies. Additionally, cross-sectional optical microscopy shows that when the pultrusion speed is at or below 0.6 m/min, the impregnation of carbon fibers by phenolic resin is more effective. The proposed multi-die pultrusion system provides a new idea for the production of small-diameter rods.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多模拉挤技术制备小直径酚醛基 CFRP 棒材
摘要 本文介绍了一种用于生产小直径酚醛基 CFRP 棒材的新型多模拉挤系统。该系统由多个串联排列的短加热模组成,有利于蒸汽从模腔中逸出,提高了产品质量。结果表明,与传统模具相比,使用多模拉挤系统生产的棒材具有更高的尺寸稳定性,层间剪切强度大多在 35 兆帕以上,最高可达 52 兆帕。与传统模具相比,其中一个实例的层间剪切强度值提高了近 71.5%,但另一个实例却仅提高了 14.72%。由于仅依靠一个对照样本,结果并不确定。扫描电子显微镜表明,与传统模具相比,使用多模具拉挤系统生产的棒材空隙更少,纤维与树脂的粘结性更好。此外,横截面光学显微镜显示,当拉挤速度在 0.6 米/分钟或以下时,酚醛树脂对碳纤维的浸渍效果更好。所提出的多模拉挤系统为生产小直径棒材提供了一种新思路。 图表摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Composite Materials
Applied Composite Materials 工程技术-材料科学:复合
CiteScore
4.20
自引率
4.30%
发文量
81
审稿时长
1.6 months
期刊介绍: Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes. Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.
期刊最新文献
A Coupled Elastoplastic-Damage Analytical Model for 3D Resin-Matrix Woven Composites Effect of Temperature on the Mixed mode I/II Translaminar Fracture of Epoxy Composites Reinforced with Cotton Fibers Experimental Characterisation of Cure-Dependent Spring-Back Behaviour of Metal-Composite Laminates in a Hot-Pressing Process Cutting Force Model of SiCp/Al Composites in Ultrasonic Elliptical Vibration Assisted Cutting with Negative Rake Angle Experimental and Simulation Analysis of the Mechanical Deterioration Mechanisms in SiCp/A356 Composites Under Thermal Cycling Load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1