Novel S-scheme Bi24O31Cl10/Bi7Fe2Ti2O17Cl Heterojunction for Efficient and Stable Photocatalytic Activities

IF 9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Materials Today Energy Pub Date : 2024-01-13 DOI:10.1016/j.mtener.2024.101498
Yunxiang Zhang, Zhichao Mu, Chenliang Zhou, Zhe Zhang, Zhili Chen, Xiangyu Cheng, Hazem Abdelsalam, Wei Chen, Diab Khalafallah, Qinfang Zhang
{"title":"Novel S-scheme Bi24O31Cl10/Bi7Fe2Ti2O17Cl Heterojunction for Efficient and Stable Photocatalytic Activities","authors":"Yunxiang Zhang, Zhichao Mu, Chenliang Zhou, Zhe Zhang, Zhili Chen, Xiangyu Cheng, Hazem Abdelsalam, Wei Chen, Diab Khalafallah, Qinfang Zhang","doi":"10.1016/j.mtener.2024.101498","DOIUrl":null,"url":null,"abstract":"<p>The strategy to boost photocatalytic activities towards CO<sub>2</sub> reduction and organic pollutants degradation is still a key challenge for novel Sillén-Aurivillius oxyhalides. In this work, a S-scheme heterojunction of Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub> and Bi<sub>7</sub>Fe<sub>2</sub>Ti<sub>2</sub>O<sub>17</sub>Cl is designed for CO<sub>2</sub> reduction and organic pollutants degradation. The as-synthesized 5% Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub>/Bi<sub>7</sub>Fe<sub>2</sub>Ti<sub>2</sub>O<sub>17</sub>Cl (BOC/BFTOC-5) composites depicts an appealing CO<sub>2</sub> reduction and removal rate for RhB organic pollutants in comparison with pristine Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub> and Bi<sub>7</sub>Fe<sub>2</sub>Ti<sub>2</sub>O<sub>17</sub>Cl oxyhalides. This fascinating photocatalytic performance could be ascribed to the synergic effect of the enhanced visible light adsorption and photo-generated carriers separation derived from the Bi<sub>24</sub>O<sub>31</sub>Cl<sub>10</sub>/Bi<sub>7</sub>Fe<sub>2</sub>Ti<sub>2</sub>O<sub>17</sub>Cl heterojunction. Simultaneously, the trapping experiments confirm that the main active species during the catalytic process are the photo-generated hole (h<sup>+</sup>) and the hydroxy free radical (·OH). This work aims at providing a S-scheme heterojunction via Bi-based oxyhalides for efficient photocatalytic activity.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"7 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101498","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The strategy to boost photocatalytic activities towards CO2 reduction and organic pollutants degradation is still a key challenge for novel Sillén-Aurivillius oxyhalides. In this work, a S-scheme heterojunction of Bi24O31Cl10 and Bi7Fe2Ti2O17Cl is designed for CO2 reduction and organic pollutants degradation. The as-synthesized 5% Bi24O31Cl10/Bi7Fe2Ti2O17Cl (BOC/BFTOC-5) composites depicts an appealing CO2 reduction and removal rate for RhB organic pollutants in comparison with pristine Bi24O31Cl10 and Bi7Fe2Ti2O17Cl oxyhalides. This fascinating photocatalytic performance could be ascribed to the synergic effect of the enhanced visible light adsorption and photo-generated carriers separation derived from the Bi24O31Cl10/Bi7Fe2Ti2O17Cl heterojunction. Simultaneously, the trapping experiments confirm that the main active species during the catalytic process are the photo-generated hole (h+) and the hydroxy free radical (·OH). This work aims at providing a S-scheme heterojunction via Bi-based oxyhalides for efficient photocatalytic activity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型 S 型 Bi24O31Cl10/Bi7Fe2Ti2O17Cl 异质结实现高效稳定的光催化活性
对于新型 Sillén-Aurivillius 氧卤化物来说,提高光催化活性以实现二氧化碳还原和有机污染物降解的策略仍然是一个关键挑战。本研究设计了 Bi24O31Cl10 和 Bi7Fe2Ti2O17Cl 的 S 型异质结,用于还原二氧化碳和降解有机污染物。与原始的 Bi24O31Cl10 和 Bi7Fe2Ti2O17Cl 氧卤化物相比,合成的 5% Bi24O31Cl10/Bi7Fe2Ti2O17Cl (BOC/BFTOC-5)复合材料的二氧化碳还原率和 RhB 有机污染物的去除率都很高。这种迷人的光催化性能可归因于 Bi24O31Cl10/Bi7Fe2Ti2O17Cl 异质结所产生的增强可见光吸附和光生载流子分离的协同效应。同时,捕获实验证实,催化过程中的主要活性物种是光生空穴(h+)和羟基自由基(-OH)。这项工作旨在通过 Bi 基氧卤化物提供一种 S 型异质结,以实现高效的光催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Energy
Materials Today Energy Materials Science-Materials Science (miscellaneous)
CiteScore
15.10
自引率
7.50%
发文量
291
审稿时长
15 days
期刊介绍: Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy. Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials. Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to: -Solar energy conversion -Hydrogen generation -Photocatalysis -Thermoelectric materials and devices -Materials for nuclear energy applications -Materials for Energy Storage -Environment protection -Sustainable and green materials
期刊最新文献
Magnetic field-augmented photoelectrochemical water splitting in Co3O4 and NiO nanorod arrays Evolution from passive to active components in lithium metal and lithium-ion batteries separators Prolonging rechargeable aluminum batteries life with flexible ceramic separator Efficient hole transport layers for silicon heterojunction solar cells by surface plasmonic modification in MoOx/Au NPs/MoOx stacks Self-powered sensors utilizing single-pillar thermocells with pyrolytic graphite sheet electrodes: harvesting body heat and solar thermal energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1