{"title":"Prolonging rechargeable aluminum batteries life with flexible ceramic separator","authors":"Yifan Liu, Dong Li, Xuan Wang, Yuehong Xie, Aqun Zheng, Lilong Xiong","doi":"10.1016/j.mtener.2024.101679","DOIUrl":null,"url":null,"abstract":"Rechargeable aluminum batteries (RABs) are attracting significant attention for their high theoretical capacity and abundant reserves. However, the poor mechanical performance of glass fiber (GF) separators and the formation of Al dendrite severely hinder the practical cycle life of these batteries. Herein, a flexible ceramic separator was developed with simple coating technique, effectively improving the cycling stability of RABs. Compared with the commercial GF separator, this flexible ceramic separator has less thickness and superior electrolyte wettability, resulting in improved interfacial compatibility and minimized interfacial resistance. Moreover, its exceptional flexibility and toughness (stress of 39.34 MPa) coupled with uniform nanopore structure, which can effectively resist the penetration of dendrites. As expected, this ceramic flexible separator facilitates stable cycling of the symmetric battery for over 1762 h at 2 mA/cm and 2 mAh/cm. It also permits the pouch Al//flake graphite full battery to achieve a coulombic efficiency of up to 90% even after 115 cycles. Apparently, this work developed the simple separator manufacturing strategy that provides an effective method to improve the cycling stability of RABs and extends the application to other types of batteries.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"77 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101679","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rechargeable aluminum batteries (RABs) are attracting significant attention for their high theoretical capacity and abundant reserves. However, the poor mechanical performance of glass fiber (GF) separators and the formation of Al dendrite severely hinder the practical cycle life of these batteries. Herein, a flexible ceramic separator was developed with simple coating technique, effectively improving the cycling stability of RABs. Compared with the commercial GF separator, this flexible ceramic separator has less thickness and superior electrolyte wettability, resulting in improved interfacial compatibility and minimized interfacial resistance. Moreover, its exceptional flexibility and toughness (stress of 39.34 MPa) coupled with uniform nanopore structure, which can effectively resist the penetration of dendrites. As expected, this ceramic flexible separator facilitates stable cycling of the symmetric battery for over 1762 h at 2 mA/cm and 2 mAh/cm. It also permits the pouch Al//flake graphite full battery to achieve a coulombic efficiency of up to 90% even after 115 cycles. Apparently, this work developed the simple separator manufacturing strategy that provides an effective method to improve the cycling stability of RABs and extends the application to other types of batteries.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials