Exploitation of green synthesized chromium doped zinc oxide nanorods (NRs) mediated by flower extract of Rhododendron arboreum for highly efficient photocatalytic degradation of cationic dyes Malachite green (MG) and Fuchsin basic (FB).

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-06-01 Epub Date: 2024-01-16 DOI:10.1080/15226514.2023.2300406
Tanuj, Rajesh Kumar, Santosh Kumar, Neerja Kalra, Subhash Sharma, Amritpal Singh
{"title":"Exploitation of green synthesized chromium doped zinc oxide nanorods (NRs) mediated by flower extract of <i>Rhododendron arboreum</i> for highly efficient photocatalytic degradation of cationic dyes Malachite green (MG) and Fuchsin basic (FB).","authors":"Tanuj, Rajesh Kumar, Santosh Kumar, Neerja Kalra, Subhash Sharma, Amritpal Singh","doi":"10.1080/15226514.2023.2300406","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, green method to synthesize chromium-doped zinc oxide (ZnO) nanorods (NRs) using an aqueous flower extract from <i>Rhododendron arboretum</i> is explored. Herein, chromium-doped ZnO NRs were prepared with different amount of chromium doping, varied as 2-10%. The green synthesized products underwent substantial analysis through X-ray diffraction (XRD), spectroscopic such as ultraviolet spectroscopy(UV-Vis) and scanning electron microscopy (SEM) methods. All samples were found to have hexagonal wurtzite ZnO, with average particle sizes of 52.41, 56.6, 54.44, 53.05, and 56.99 nm, respectively, for 2, 4, 6, 8, and 10% chromium doping in ZnO NRs. The Cr-doped ZnO NRs exhibited remarkable photocatalytic degradation activity of cationic dyes under UV-light, <i>i.e.,</i> Malachite Green and Fuchsin Basic with degradation of 99.604 and 99.881%, respectively in 90 min. The reusability tests for these green synthesized Cr-doped ZnO NRs have also been carried out, showed 9-11 cycles with 85% of degradation efficiency. In addition, the Cr-doped ZnO NRs exhibited high selectivity for cationic dyes when experiments against mixture of dyes were performed. Photodegradation kinetics followed the pseudo-first-order model. The flower-extract-stabilized chromium-doped ZnO NRs demonstrated high photocatalytic activity toward malachite green and fuchsin basic dyes, potential material for pollution remediation.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2023.2300406","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, green method to synthesize chromium-doped zinc oxide (ZnO) nanorods (NRs) using an aqueous flower extract from Rhododendron arboretum is explored. Herein, chromium-doped ZnO NRs were prepared with different amount of chromium doping, varied as 2-10%. The green synthesized products underwent substantial analysis through X-ray diffraction (XRD), spectroscopic such as ultraviolet spectroscopy(UV-Vis) and scanning electron microscopy (SEM) methods. All samples were found to have hexagonal wurtzite ZnO, with average particle sizes of 52.41, 56.6, 54.44, 53.05, and 56.99 nm, respectively, for 2, 4, 6, 8, and 10% chromium doping in ZnO NRs. The Cr-doped ZnO NRs exhibited remarkable photocatalytic degradation activity of cationic dyes under UV-light, i.e., Malachite Green and Fuchsin Basic with degradation of 99.604 and 99.881%, respectively in 90 min. The reusability tests for these green synthesized Cr-doped ZnO NRs have also been carried out, showed 9-11 cycles with 85% of degradation efficiency. In addition, the Cr-doped ZnO NRs exhibited high selectivity for cationic dyes when experiments against mixture of dyes were performed. Photodegradation kinetics followed the pseudo-first-order model. The flower-extract-stabilized chromium-doped ZnO NRs demonstrated high photocatalytic activity toward malachite green and fuchsin basic dyes, potential material for pollution remediation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用杜鹃花提取物介导的绿色合成掺铬氧化锌纳米棒(NRs),高效光催化降解阳离子染料孔雀石绿(MG)和碱性福欣(FB)。
本研究探索了利用杜鹃花水提取物合成掺铬氧化锌(ZnO)纳米棒(NRs)的绿色方法。本文制备了不同掺杂量(2-10%)的铬掺杂氧化锌纳米棒。通过 X 射线衍射(XRD)、紫外光谱(UV-Vis)和扫描电子显微镜(SEM)等方法对绿色合成产品进行了大量分析。所有样品均为六方菱锌氧化物,平均粒径分别为 52.41 纳米、56.6 纳米、54.44 纳米、53.05 纳米和 56.99 纳米,铬掺杂量分别为 2%、4%、6%、8% 和 10%。掺杂铬的 ZnO NRs 在紫外光下具有显著的光催化降解阳离子染料的活性,即在 90 分钟内降解孔雀石绿和碱性荧光染料的活性分别为 99.604% 和 99.881%。还对这些绿色合成的掺杂铬的 ZnO NRs 进行了可重复使用性测试,结果表明,循环使用 9-11 次,降解效率为 85%。此外,在针对混合染料的实验中,掺杂铬的 ZnO NRs 对阳离子染料具有很高的选择性。光降解动力学遵循伪一阶模型。花提取物稳定的掺铬 ZnO NRs 对孔雀石绿和紫红碱性染料具有很高的光催化活性,是一种潜在的污染修复材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1