{"title":"Gradient boosting dendritic network for ultra-short-term PV power prediction","authors":"Chunsheng Wang, Mutian Li, Yuan Cao, Tianhao Lu","doi":"10.1007/s11708-024-0915-y","DOIUrl":null,"url":null,"abstract":"<p>To achieve effective intraday dispatch of photovoltaic (PV) power generation systems, a reliable ultra-short-term power generation forecasting model is required. Based on a gradient boosting strategy and a dendritic network, this paper proposes a novel ensemble prediction model, named gradient boosting dendritic network (GBDD) model which can reduce the forecast error by learning the relationship between forecast residuals and meteorological factors during the training of sub-models by means of a greedy function approximation. Unlike other machine learning models, the GBDD proposed is able to make fuller use of all meteorological factor data and has a good model interpretation. In addition, based on the structure of GBDD, this paper proposes a strategy that can improve the prediction performance of other types of prediction models. The GBDD is trained by analyzing the relationship between prediction errors and meteorological factors for compensating the prediction results of other prediction models. The experimental results show that the GBDD proposed has the benefit of achieving a higher PV power prediction accuracy for PV power generation and can be used to improve the prediction performance of other prediction models.</p>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"211 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11708-024-0915-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
To achieve effective intraday dispatch of photovoltaic (PV) power generation systems, a reliable ultra-short-term power generation forecasting model is required. Based on a gradient boosting strategy and a dendritic network, this paper proposes a novel ensemble prediction model, named gradient boosting dendritic network (GBDD) model which can reduce the forecast error by learning the relationship between forecast residuals and meteorological factors during the training of sub-models by means of a greedy function approximation. Unlike other machine learning models, the GBDD proposed is able to make fuller use of all meteorological factor data and has a good model interpretation. In addition, based on the structure of GBDD, this paper proposes a strategy that can improve the prediction performance of other types of prediction models. The GBDD is trained by analyzing the relationship between prediction errors and meteorological factors for compensating the prediction results of other prediction models. The experimental results show that the GBDD proposed has the benefit of achieving a higher PV power prediction accuracy for PV power generation and can be used to improve the prediction performance of other prediction models.
期刊介绍:
Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy.
Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues.
Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research.
High-quality papers are solicited in, but are not limited to the following areas:
-Fundamental energy science
-Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency
-Energy and the environment, including pollution control, energy efficiency and climate change
-Energy economics, strategy and policy
-Emerging energy issue