{"title":"Censored broken adaptive ridge regression in high-dimension","authors":"Jeongjin Lee, Taehwa Choi, Sangbum Choi","doi":"10.1007/s00180-023-01446-1","DOIUrl":null,"url":null,"abstract":"<p>Broken adaptive ridge (BAR) is a penalized regression method that performs variable selection via a computationally scalable surrogate to <span>\\(L_0\\)</span> regularization. The BAR regression has many appealing features; it converges to selection with <span>\\(L_0\\)</span> penalties as a result of reweighting <span>\\(L_2\\)</span> penalties, and satisfies the oracle property with grouping effect for highly correlated covariates. In this paper, we investigate the BAR procedure for variable selection in a semiparametric accelerated failure time model with complex high-dimensional censored data. Coupled with Buckley-James-type responses, BAR-based variable selection procedures can be performed when event times are censored in complex ways, such as right-censored, left-censored, or double-censored. Our approach utilizes a two-stage cyclic coordinate descent algorithm to minimize the objective function by iteratively estimating the pseudo survival response and regression coefficients along the direction of coordinates. Under some weak regularity conditions, we establish both the oracle property and the grouping effect of the proposed BAR estimator. Numerical studies are conducted to investigate the finite-sample performance of the proposed algorithm and an application to real data is provided as a data example.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-023-01446-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Broken adaptive ridge (BAR) is a penalized regression method that performs variable selection via a computationally scalable surrogate to \(L_0\) regularization. The BAR regression has many appealing features; it converges to selection with \(L_0\) penalties as a result of reweighting \(L_2\) penalties, and satisfies the oracle property with grouping effect for highly correlated covariates. In this paper, we investigate the BAR procedure for variable selection in a semiparametric accelerated failure time model with complex high-dimensional censored data. Coupled with Buckley-James-type responses, BAR-based variable selection procedures can be performed when event times are censored in complex ways, such as right-censored, left-censored, or double-censored. Our approach utilizes a two-stage cyclic coordinate descent algorithm to minimize the objective function by iteratively estimating the pseudo survival response and regression coefficients along the direction of coordinates. Under some weak regularity conditions, we establish both the oracle property and the grouping effect of the proposed BAR estimator. Numerical studies are conducted to investigate the finite-sample performance of the proposed algorithm and an application to real data is provided as a data example.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.