Bayesian adaptive lasso quantile regression with non-ignorable missing responses

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Computational Statistics Pub Date : 2024-09-16 DOI:10.1007/s00180-024-01546-6
Ranran Chen, Mai Dao, Keying Ye, Min Wang
{"title":"Bayesian adaptive lasso quantile regression with non-ignorable missing responses","authors":"Ranran Chen, Mai Dao, Keying Ye, Min Wang","doi":"10.1007/s00180-024-01546-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we develop a fully Bayesian adaptive lasso quantile regression model to analyze data with non-ignorable missing responses, which frequently occur in various fields of study. Specifically, we employ a logistic regression model to deal with missing data of non-ignorable mechanism. By using the asymmetric Laplace working likelihood for the data and specifying Laplace priors for the regression coefficients, our proposed method extends the Bayesian lasso framework by imposing specific penalization parameters on each regression coefficient, enhancing our estimation and variable selection capability. Furthermore, we embrace the normal-exponential mixture representation of the asymmetric Laplace distribution and the Student-<i>t</i> approximation of the logistic regression model to develop a simple and efficient Gibbs sampling algorithm for generating posterior samples and making statistical inferences. The finite-sample performance of the proposed algorithm is investigated through various simulation studies and a real-data example.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"94 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01546-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a fully Bayesian adaptive lasso quantile regression model to analyze data with non-ignorable missing responses, which frequently occur in various fields of study. Specifically, we employ a logistic regression model to deal with missing data of non-ignorable mechanism. By using the asymmetric Laplace working likelihood for the data and specifying Laplace priors for the regression coefficients, our proposed method extends the Bayesian lasso framework by imposing specific penalization parameters on each regression coefficient, enhancing our estimation and variable selection capability. Furthermore, we embrace the normal-exponential mixture representation of the asymmetric Laplace distribution and the Student-t approximation of the logistic regression model to develop a simple and efficient Gibbs sampling algorithm for generating posterior samples and making statistical inferences. The finite-sample performance of the proposed algorithm is investigated through various simulation studies and a real-data example.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有不可忽略的缺失响应的贝叶斯自适应套索量化回归
在本文中,我们开发了一种全贝叶斯自适应套索量子回归模型,用于分析在各个研究领域经常出现的不可忽略的缺失响应数据。具体来说,我们采用逻辑回归模型来处理不可忽略机制的缺失数据。通过对数据使用非对称拉普拉斯工作似然,并为回归系数指定拉普拉斯先验,我们提出的方法扩展了贝叶斯套索框架,对每个回归系数施加了特定的惩罚参数,从而增强了我们的估计和变量选择能力。此外,我们还采用了非对称拉普拉斯分布的正态-指数混合表示法和逻辑回归模型的 Student-t 近似方法,开发了一种简单高效的吉布斯抽样算法,用于生成后验样本并进行统计推断。通过各种模拟研究和一个真实数据示例,研究了所提算法的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
期刊最新文献
Bayes estimation of ratio of scale-like parameters for inverse Gaussian distributions and applications to classification Multivariate approaches to investigate the home and away behavior of football teams playing football matches Kendall correlations and radar charts to include goals for and goals against in soccer rankings Bayesian adaptive lasso quantile regression with non-ignorable missing responses Statistical visualisation of tidy and geospatial data in R via kernel smoothing methods in the eks package
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1