A Two-Step Longstaff Schwartz Monte Carlo Approach to Game Option Pricing

Ce Wang
{"title":"A Two-Step Longstaff Schwartz Monte Carlo Approach to Game Option Pricing","authors":"Ce Wang","doi":"arxiv-2401.08093","DOIUrl":null,"url":null,"abstract":"We proposed a two-step Longstaff Schwartz Monte Carlo (LSMC) method with two\nregression models fitted at each time step to price game options. Although the\noriginal LSMC can be used to price game options with an enlarged range of path\nin regression and a modified cashflow updating rule, we identified a drawback\nof such approach, which motivated us to propose our approach. We implemented\nnumerical examples with benchmarks using binomial tree and numerical PDE, and\nit showed that our method produces more reliable results comparing to the\noriginal LSMC.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.08093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We proposed a two-step Longstaff Schwartz Monte Carlo (LSMC) method with two regression models fitted at each time step to price game options. Although the original LSMC can be used to price game options with an enlarged range of path in regression and a modified cashflow updating rule, we identified a drawback of such approach, which motivated us to propose our approach. We implemented numerical examples with benchmarks using binomial tree and numerical PDE, and it showed that our method produces more reliable results comparing to the original LSMC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
游戏期权定价的两步 Longstaff Schwartz Monte Carlo 方法
我们提出了一种两步 Longstaff Schwartz Monte Carlo(LSMC)方法,即在每个时间步都拟合两个回归模型来为博弈期权定价。尽管最初的 LSMC 可以通过扩大回归路径范围和修改现金流更新规则来为博弈期权定价,但我们发现了这种方法的一个缺点,这促使我们提出了我们的方法。我们利用二叉树和数值 PDE 实现了基准数值示例,结果表明与原始 LSMC 相比,我们的方法产生了更可靠的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Short-maturity Asian options in local-stochastic volatility models Automate Strategy Finding with LLM in Quant investment Valuation Model of Chinese Convertible Bonds Based on Monte Carlo Simulation Semi-analytical pricing of options written on SOFR futures A functional variational approach to pricing path dependent insurance policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1