Automate Strategy Finding with LLM in Quant investment

Zhizhuo Kou, Holam Yu, Jingshu Peng, Lei Chen
{"title":"Automate Strategy Finding with LLM in Quant investment","authors":"Zhizhuo Kou, Holam Yu, Jingshu Peng, Lei Chen","doi":"arxiv-2409.06289","DOIUrl":null,"url":null,"abstract":"Despite significant progress in deep learning for financial trading, existing\nmodels often face instability and high uncertainty, hindering their practical\napplication. Leveraging advancements in Large Language Models (LLMs) and\nmulti-agent architectures, we propose a novel framework for quantitative stock\ninvestment in portfolio management and alpha mining. Our framework addresses\nthese issues by integrating LLMs to generate diversified alphas and employing a\nmulti-agent approach to dynamically evaluate market conditions. This paper\nproposes a framework where large language models (LLMs) mine alpha factors from\nmultimodal financial data, ensuring a comprehensive understanding of market\ndynamics. The first module extracts predictive signals by integrating numerical\ndata, research papers, and visual charts. The second module uses ensemble\nlearning to construct a diverse pool of trading agents with varying risk\npreferences, enhancing strategy performance through a broader market analysis.\nIn the third module, a dynamic weight-gating mechanism selects and assigns\nweights to the most relevant agents based on real-time market conditions,\nenabling the creation of an adaptive and context-aware composite alpha formula.\nExtensive experiments on the Chinese stock markets demonstrate that this\nframework significantly outperforms state-of-the-art baselines across multiple\nfinancial metrics. The results underscore the efficacy of combining\nLLM-generated alphas with a multi-agent architecture to achieve superior\ntrading performance and stability. This work highlights the potential of\nAI-driven approaches in enhancing quantitative investment strategies and sets a\nnew benchmark for integrating advanced machine learning techniques in financial\ntrading can also be applied on diverse markets.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite significant progress in deep learning for financial trading, existing models often face instability and high uncertainty, hindering their practical application. Leveraging advancements in Large Language Models (LLMs) and multi-agent architectures, we propose a novel framework for quantitative stock investment in portfolio management and alpha mining. Our framework addresses these issues by integrating LLMs to generate diversified alphas and employing a multi-agent approach to dynamically evaluate market conditions. This paper proposes a framework where large language models (LLMs) mine alpha factors from multimodal financial data, ensuring a comprehensive understanding of market dynamics. The first module extracts predictive signals by integrating numerical data, research papers, and visual charts. The second module uses ensemble learning to construct a diverse pool of trading agents with varying risk preferences, enhancing strategy performance through a broader market analysis. In the third module, a dynamic weight-gating mechanism selects and assigns weights to the most relevant agents based on real-time market conditions, enabling the creation of an adaptive and context-aware composite alpha formula. Extensive experiments on the Chinese stock markets demonstrate that this framework significantly outperforms state-of-the-art baselines across multiple financial metrics. The results underscore the efficacy of combining LLM-generated alphas with a multi-agent architecture to achieve superior trading performance and stability. This work highlights the potential of AI-driven approaches in enhancing quantitative investment strategies and sets a new benchmark for integrating advanced machine learning techniques in financial trading can also be applied on diverse markets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用定量投资 LLM 自动寻找策略
尽管深度学习在金融交易领域取得了重大进展,但现有模型往往面临不稳定性和高度不确定性,阻碍了其实际应用。利用大型语言模型(LLM)和多代理架构的进步,我们提出了一种用于投资组合管理和阿尔法挖掘的量化股票投资新框架。我们的框架通过整合大型语言模型来生成多样化阿尔法,并采用多代理方法来动态评估市场条件,从而解决了这些问题。本文提出了一个大语言模型(LLM)从多模态金融数据中挖掘阿尔法因子的框架,以确保对市场动态的全面了解。第一个模块通过整合数字数据、研究论文和可视化图表来提取预测信号。在第三个模块中,动态加权机制根据实时市场条件选择并分配权重给最相关的代理,从而创建一个自适应和上下文感知的综合阿尔法公式。在中国股票市场上的广泛实验表明,该框架在多个金融指标上的表现明显优于最先进的基线。这些结果凸显了将LLM生成的阿尔法公式与多代理架构相结合以实现卓越的交易性能和稳定性的功效。这项工作凸显了人工智能驱动的方法在增强量化投资策略方面的潜力,并为在金融交易中整合先进的机器学习技术树立了一个新的基准,该基准也可应用于不同的市场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Short-maturity Asian options in local-stochastic volatility models Automate Strategy Finding with LLM in Quant investment Valuation Model of Chinese Convertible Bonds Based on Monte Carlo Simulation Semi-analytical pricing of options written on SOFR futures A functional variational approach to pricing path dependent insurance policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1