Experimental and Analytical Investigation of Deflection of R-UHPFRC Beams Subjected to Loading–Unloading

IF 3.6 3区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY International Journal of Concrete Structures and Materials Pub Date : 2024-01-19 DOI:10.1186/s40069-023-00636-x
Bartłomiej Sawicki, Eugen Brühwiler
{"title":"Experimental and Analytical Investigation of Deflection of R-UHPFRC Beams Subjected to Loading–Unloading","authors":"Bartłomiej Sawicki, Eugen Brühwiler","doi":"10.1186/s40069-023-00636-x","DOIUrl":null,"url":null,"abstract":"<p>Under service conditions, R-UHPFRC (Reinforced Ultra High Performance Fiber Reinforced Cementitious composite) beams exhibit residual deflection after loading–unloading. This is due to the tensile strain hardening behavior of UHPFRC. The precise calculation of deflection is thus relevant and was not addressed previously. This paper proposes a material model for UHPFRC under loading–unloading and a numerical layered model for the calculation of stress and strain distribution in the cross section. Then, a curvature-based analytical model is presented for calculation of deflection of a beam. This method is finally compared and validated against experimental results as obtained from four-point bending of full-scale R-UHPFRC beams. This research reveals the need for a specific material model for UHPFRC subjected to loading–unloading for the precise calculation of the structural response of elements and members under repetitive loading, such as service or fatigue loading.</p>","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":"1 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-023-00636-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Under service conditions, R-UHPFRC (Reinforced Ultra High Performance Fiber Reinforced Cementitious composite) beams exhibit residual deflection after loading–unloading. This is due to the tensile strain hardening behavior of UHPFRC. The precise calculation of deflection is thus relevant and was not addressed previously. This paper proposes a material model for UHPFRC under loading–unloading and a numerical layered model for the calculation of stress and strain distribution in the cross section. Then, a curvature-based analytical model is presented for calculation of deflection of a beam. This method is finally compared and validated against experimental results as obtained from four-point bending of full-scale R-UHPFRC beams. This research reveals the need for a specific material model for UHPFRC subjected to loading–unloading for the precise calculation of the structural response of elements and members under repetitive loading, such as service or fatigue loading.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加载-卸载条件下 R-UHPFRC 梁挠度的实验和分析研究
在使用条件下,R-UHPFRC(超高性能纤维增强水泥基复合材料)梁在加载-卸载后会出现残余挠度。这是由于 UHPFRC 的拉伸应变硬化行为造成的。因此,挠度的精确计算具有现实意义,但之前并未涉及。本文提出了加载-卸载条件下 UHPFRC 的材料模型,以及用于计算横截面应力和应变分布的数值分层模型。然后,提出了一个基于曲率的分析模型,用于计算梁的挠度。最后,将该方法与全尺寸 R-UHPFRC 梁的四点弯曲实验结果进行比较和验证。这项研究表明,需要为承受加载-卸载的 UHPFRC 建立特定的材料模型,以精确计算重复加载(如使用或疲劳加载)下的构件和部件的结构响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Concrete Structures and Materials
International Journal of Concrete Structures and Materials CONSTRUCTION & BUILDING TECHNOLOGY-ENGINEERING, CIVIL
CiteScore
6.30
自引率
5.90%
发文量
61
审稿时长
13 weeks
期刊介绍: The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on Properties and performance of concrete and concrete structures Advanced and improved experimental techniques Latest modelling methods Possible improvement and enhancement of concrete properties Structural and microstructural characterization Concrete applications Fiber reinforced concrete technology Concrete waste management.
期刊最新文献
Experimental Investigation on Axial Strength Improvement of Cold-Formed Steel Jacketed Concrete Stub Columns Proposal of a Creep-Experiment Method and Superficial Creep Coefficient Model of CFT Considering a Stress-Redistribution Effect Impact of Rubber Content on Performance of Ultra-High-Performance Rubberised Concrete (UHPRuC) Study on the Diffusion Mechanism of Infiltration Grouting in Fault Fracture Zone Considering the Time-Varying Characteristics of Slurry Viscosity Under Seawater Environment Enhancing the Flexural Capacity of Deteriorated Low-Strength Prestressed Concrete Beam Using Near-Surface Mounted Post-Tensioned Carbon Fiber-Reinforced Polymer Bar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1