Regulation of coconut somatic embryogenesis: decoding the role of long non-coding RNAs

IF 1.7 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Reports Pub Date : 2024-01-19 DOI:10.1007/s11816-023-00884-z
A. A. Sabana, Ginny Antony, K. P. Gangaraj, Tony Grace, M. K. Rajesh
{"title":"Regulation of coconut somatic embryogenesis: decoding the role of long non-coding RNAs","authors":"A. A. Sabana, Ginny Antony, K. P. Gangaraj, Tony Grace, M. K. Rajesh","doi":"10.1007/s11816-023-00884-z","DOIUrl":null,"url":null,"abstract":"<p>Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides that lack significant protein coding potential and have been shown to regulate various biological processes. This study was designed to identify lncRNAs in coconut and their role in the process of somatic embryogenesis in coconut, a crop with high recalcitrance to in vitro culture. RNA-Seq data of coconut embryogenic calli of the West Coast Tall cultivar was exploited for in silico prediction of lncRNA. From a total of 6328 transcripts, which were annotated as uncharacterised or with no homology hits with the existing database, 5110 putative lncRNAs are identified. We also studied the relationship between lncRNAs, microRNAs (miRNAs) and mRNAs and found that some of the lncRNAs act as miRNA precursors, some as potential miRNA targets and some function as endogenous target mimics (eTMs) for miRNAs. Real-time quantitative PCR confirmed that 10 selected lncRNAs showed significant differences in the expression pattern in different stages of coconut somatic embryogenesis. Our results suggest the existence of diverse lncRNAs in coconut embryogenic calli, some of which are differentially expressed. The information generated in this study could be of great value in understanding the molecular mechanisms governing somatic embryogenesis in coconut.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":"18 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Reports","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11816-023-00884-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides that lack significant protein coding potential and have been shown to regulate various biological processes. This study was designed to identify lncRNAs in coconut and their role in the process of somatic embryogenesis in coconut, a crop with high recalcitrance to in vitro culture. RNA-Seq data of coconut embryogenic calli of the West Coast Tall cultivar was exploited for in silico prediction of lncRNA. From a total of 6328 transcripts, which were annotated as uncharacterised or with no homology hits with the existing database, 5110 putative lncRNAs are identified. We also studied the relationship between lncRNAs, microRNAs (miRNAs) and mRNAs and found that some of the lncRNAs act as miRNA precursors, some as potential miRNA targets and some function as endogenous target mimics (eTMs) for miRNAs. Real-time quantitative PCR confirmed that 10 selected lncRNAs showed significant differences in the expression pattern in different stages of coconut somatic embryogenesis. Our results suggest the existence of diverse lncRNAs in coconut embryogenic calli, some of which are differentially expressed. The information generated in this study could be of great value in understanding the molecular mechanisms governing somatic embryogenesis in coconut.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
椰子体细胞胚胎发生的调控:解码长非编码 RNA 的作用
长非编码 RNA(lncRNA)是指长度超过 200 个核苷酸的转录本,它们缺乏显著的蛋白质编码潜能,已被证明可调控各种生物过程。本研究旨在鉴定椰子中的lncRNA及其在椰子体细胞胚胎发生过程中的作用。研究利用西海岸高秆栽培品种椰子胚胎发生胼胝体的 RNA-Seq 数据对 lncRNA 进行了硅预测。从总共 6328 个转录本中(这些转录本被注释为未表征或与现有数据库没有同源性命中),鉴定出 5110 个推测的 lncRNA。我们还研究了lncRNA、microRNA(miRNA)和mRNA之间的关系,发现一些lncRNA是miRNA的前体,一些是潜在的miRNA靶标,还有一些是miRNA的内源性靶标模拟物(eTM)。实时定量 PCR 证实,所选的 10 个 lncRNA 在椰子体细胞胚胎发生的不同阶段表现出显著的表达模式差异。我们的研究结果表明,在椰子胚胎发生的胼胝体中存在多种lncRNA,其中一些存在差异表达。本研究获得的信息对了解椰子体细胞胚胎发生的分子机制具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biotechnology Reports
Plant Biotechnology Reports 生物-生物工程与应用微生物
CiteScore
4.10
自引率
4.20%
发文量
72
审稿时长
>12 weeks
期刊介绍: Plant Biotechnology Reports publishes original, peer-reviewed articles dealing with all aspects of fundamental and applied research in the field of plant biotechnology, which includes molecular biology, genetics, biochemistry, cell and tissue culture, production of secondary metabolites, metabolic engineering, genomics, proteomics, and metabolomics. Plant Biotechnology Reports emphasizes studies on plants indigenous to the Asia-Pacific region and studies related to commercialization of plant biotechnology. Plant Biotechnology Reports does not exclude studies on lower plants including algae and cyanobacteria if studies are carried out within the aspects described above.
期刊最新文献
Overexpression of CRK4, the cysteine-rich receptor-like protein kinase of Arabidopsis, regulates the resistance to abiotic stress and abscisic acid responses Identification and characterization of a novel Wx-B1 allele in a waxy wheat (Triticum aestivum L.) Molecular characterization of a sweetpotato stress tolerance-associated GDP-L-galactose phosphorylase gene (IbGGP1) in response to abiotic stress Differential expression of sweetpotato nodulin 26-like intrinsic protein (NIP) genes in response to infection with the root knot nematode Identification of key genes regulating macronutrient accumulation and final yield in wheat under potassium deficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1