{"title":"Scalable Large Area Perovskite Solar Cell Modules Fabricated with High Humidity Tolerance by Vacuum Deposition","authors":"Sheng Zou, Suxia Liang, Tianyu Yu, Jie Su, Yunlei Jiang, Renjie Hua, Zhiyuan Huang, Wenjun Zhang, Lei Shi, Yukun Guo, Qingshun Dong, Yaling Han, Hongru Ma, Yilin Gao, Yantao Shi, Yuan Dong","doi":"10.1016/j.mtener.2024.101506","DOIUrl":null,"url":null,"abstract":"<p>Vacuum deposition is promising for large-area, high-throughput production of perovskite solar cells (PSCs). However, the strict low humidity control increases the costs for manufacturing facilities and hinders the large-scale production of PSCs. In this work, a sequential deposition method was used to prepare the perovskite intermediate phase, and the impact of ambient humidity was studied during the annealing process. It is shown that proper humidity has a positive effect on the perovskite layer, which is conducive to accelerate the reaction between organic salts and PbI<sub>2</sub> and improve the surface morphology of the film. The perovskite annealing under 55% relative humidity exhibits fewer defects and faster carrier transport kinetics. The resulting PSCs, with all layers fabricated adopting vapor deposition, yield a power conversion efficiency (PCE) of 15.01% for the large area modules of 100 cm<sup>2</sup> (active area 64.8 cm<sup>2</sup>). More impressively, the PCE of the unpackaged cell modules remained above 80% after being placed in ambient air for 1200 h. The results open a promising way for scalable fabrication of humidity-tolerant large-area perovskite solar cell modules and shed light on the industrial production of PSCs.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"6 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101506","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Vacuum deposition is promising for large-area, high-throughput production of perovskite solar cells (PSCs). However, the strict low humidity control increases the costs for manufacturing facilities and hinders the large-scale production of PSCs. In this work, a sequential deposition method was used to prepare the perovskite intermediate phase, and the impact of ambient humidity was studied during the annealing process. It is shown that proper humidity has a positive effect on the perovskite layer, which is conducive to accelerate the reaction between organic salts and PbI2 and improve the surface morphology of the film. The perovskite annealing under 55% relative humidity exhibits fewer defects and faster carrier transport kinetics. The resulting PSCs, with all layers fabricated adopting vapor deposition, yield a power conversion efficiency (PCE) of 15.01% for the large area modules of 100 cm2 (active area 64.8 cm2). More impressively, the PCE of the unpackaged cell modules remained above 80% after being placed in ambient air for 1200 h. The results open a promising way for scalable fabrication of humidity-tolerant large-area perovskite solar cell modules and shed light on the industrial production of PSCs.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials