{"title":"Real-Time Co-Simulation for the Analysis of Cyber Attacks Impact on Distance Relay Backup Protection","authors":"Nadia Boumkheld, G. Deconinck, Rick Loenders","doi":"10.4108/ew.4862","DOIUrl":null,"url":null,"abstract":"Smart Grid is a cyber-physical system that incorporates Information and Communication Technologies (ICT) into the physical power system, which introduces vulnerabilities to the grid and opens the door to cyber attacks. Wide area protection is one of the most important smart grid applications that aims at protecting the power system against faults and disturbances, which makes it an attractive target to cyber attacks, aiming at compromising the reliability of the power system. Understanding the interaction between the cyber and physical components of the smart grid and analyzing the damage that cyber-attacks can do to wide area protection is very important as it helps in developing effective mitigation approaches. This paper evaluates the impact of cyber attacks on a wide area distance relay backup protection scheme in real-time, through the development of a co-simulation platform based on Real Time Digital Simulator (RTDS) and network simulator 3 (NS3) and using the IEEE-14 bus power system model.","PeriodicalId":53458,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"48 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.4862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Smart Grid is a cyber-physical system that incorporates Information and Communication Technologies (ICT) into the physical power system, which introduces vulnerabilities to the grid and opens the door to cyber attacks. Wide area protection is one of the most important smart grid applications that aims at protecting the power system against faults and disturbances, which makes it an attractive target to cyber attacks, aiming at compromising the reliability of the power system. Understanding the interaction between the cyber and physical components of the smart grid and analyzing the damage that cyber-attacks can do to wide area protection is very important as it helps in developing effective mitigation approaches. This paper evaluates the impact of cyber attacks on a wide area distance relay backup protection scheme in real-time, through the development of a co-simulation platform based on Real Time Digital Simulator (RTDS) and network simulator 3 (NS3) and using the IEEE-14 bus power system model.
期刊介绍:
With ICT pervading everyday objects and infrastructures, the ‘Future Internet’ is envisioned to undergo a radical transformation from how we know it today (a mere communication highway) into a vast hybrid network seamlessly integrating knowledge, people and machines into techno-social ecosystems whose behaviour transcends the boundaries of today’s engineering science. As the internet of things continues to grow, billions and trillions of data bytes need to be moved, stored and shared. The energy thus consumed and the climate impact of data centers are increasing dramatically, thereby becoming significant contributors to global warming and climate change. As reported recently, the combined electricity consumption of the world’s data centers has already exceeded that of some of the world''s top ten economies. In the ensuing process of integrating traditional and renewable energy, monitoring and managing various energy sources, and processing and transferring technological information through various channels, IT will undoubtedly play an ever-increasing and central role. Several technologies are currently racing to production to meet this challenge, from ‘smart dust’ to hybrid networks capable of controlling the emergence of dependable and reliable green and energy-efficient ecosystems – which we generically term the ‘energy web’ – calling for major paradigm shifts highly disruptive of the ways the energy sector functions today. The EAI Transactions on Energy Web are positioned at the forefront of these efforts and provide a forum for the most forward-looking, state-of-the-art research bringing together the cross section of IT and Energy communities. The journal will publish original works reporting on prominent advances that challenge traditional thinking.