{"title":"Enhancing Efficiency and Energy Optimization: Data-Driven Solutions in Process Industrial Manufacturing","authors":"Hui Liu, Guihao Zhang","doi":"10.4108/ew.6098","DOIUrl":null,"url":null,"abstract":"This paper reviews the current state of research in data analytics and machine learning techniques, focusing on their applications in process industrial manufacturing, particularly in control and optimization. Key areas for future research include selection and transfer learning for process monitoring, addressing time-varying characteristics, and enhancing data-driven optimal control with domain-specific knowledge. Additionally, the paper explores reinforcement learning techniques and robust optimization, including distributional robust optimization, for high-level decision-making. Emphasizing the importance of historical knowledge of plants and processes, this paper aims to identify knowledge gaps and pave the way for future research in data-driven strategies for process industries, with a particular emphasis on energy efficiency and optimization.","PeriodicalId":53458,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"3 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.6098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reviews the current state of research in data analytics and machine learning techniques, focusing on their applications in process industrial manufacturing, particularly in control and optimization. Key areas for future research include selection and transfer learning for process monitoring, addressing time-varying characteristics, and enhancing data-driven optimal control with domain-specific knowledge. Additionally, the paper explores reinforcement learning techniques and robust optimization, including distributional robust optimization, for high-level decision-making. Emphasizing the importance of historical knowledge of plants and processes, this paper aims to identify knowledge gaps and pave the way for future research in data-driven strategies for process industries, with a particular emphasis on energy efficiency and optimization.
期刊介绍:
With ICT pervading everyday objects and infrastructures, the ‘Future Internet’ is envisioned to undergo a radical transformation from how we know it today (a mere communication highway) into a vast hybrid network seamlessly integrating knowledge, people and machines into techno-social ecosystems whose behaviour transcends the boundaries of today’s engineering science. As the internet of things continues to grow, billions and trillions of data bytes need to be moved, stored and shared. The energy thus consumed and the climate impact of data centers are increasing dramatically, thereby becoming significant contributors to global warming and climate change. As reported recently, the combined electricity consumption of the world’s data centers has already exceeded that of some of the world''s top ten economies. In the ensuing process of integrating traditional and renewable energy, monitoring and managing various energy sources, and processing and transferring technological information through various channels, IT will undoubtedly play an ever-increasing and central role. Several technologies are currently racing to production to meet this challenge, from ‘smart dust’ to hybrid networks capable of controlling the emergence of dependable and reliable green and energy-efficient ecosystems – which we generically term the ‘energy web’ – calling for major paradigm shifts highly disruptive of the ways the energy sector functions today. The EAI Transactions on Energy Web are positioned at the forefront of these efforts and provide a forum for the most forward-looking, state-of-the-art research bringing together the cross section of IT and Energy communities. The journal will publish original works reporting on prominent advances that challenge traditional thinking.