{"title":"Subseasonal Variability of U.S. Coastal Sea Level from MJO and ENSO Teleconnection Interference","authors":"Marybeth Arcodia, Emily Becker, B. Kirtman","doi":"10.1175/waf-d-23-0002.1","DOIUrl":null,"url":null,"abstract":"\nClimate variability affects sea levels as certain climate modes can accelerate or decelerate the rising sea level trend, but subseasonal variability of coastal sea levels is under-explored. This study is the first to investigate how remote tropical forcing from the MJO and ENSO impact subseasonal U.S. coastal sea level variability. Here, composite analyses using tide gauge data from six coastal regions along the East and West Coasts of the U.S. reveal influences on sea level anomalies from both the MJO and ENSO. Tropical MJO deep convection forces a signal that results in U.S. coastal sea levels anomalies that vary based on MJO phase. Further, ENSO is shown to modulate both the MJO sea level response and background state of the teleconnections. The sea level anomalies can be significantly enhanced or weakened by the MJO-associated anomaly along the East Coast due to constructive or destructive interference with the ENSO-associated anomaly, respectively. The West Coast anomaly is found to be dominated by ENSO. We examine physical mechanisms by which MJO and ENSO teleconnections impact coastal sea levels and find consistent relationships between low-level winds and sea level pressure which are spatially-varying drivers of the variability. Two case studies reveal how MJO and ENSO teleconnection interference played a role in notable coastal flooding events. Much of the focus on sea level rise concerns the long-term trend associated with anthropogenic warming, but on shorter time scales, we find subseasonal climate variability has the potential to exacerbate the regional coastal flooding impacts.","PeriodicalId":509742,"journal":{"name":"Weather and Forecasting","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/waf-d-23-0002.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Climate variability affects sea levels as certain climate modes can accelerate or decelerate the rising sea level trend, but subseasonal variability of coastal sea levels is under-explored. This study is the first to investigate how remote tropical forcing from the MJO and ENSO impact subseasonal U.S. coastal sea level variability. Here, composite analyses using tide gauge data from six coastal regions along the East and West Coasts of the U.S. reveal influences on sea level anomalies from both the MJO and ENSO. Tropical MJO deep convection forces a signal that results in U.S. coastal sea levels anomalies that vary based on MJO phase. Further, ENSO is shown to modulate both the MJO sea level response and background state of the teleconnections. The sea level anomalies can be significantly enhanced or weakened by the MJO-associated anomaly along the East Coast due to constructive or destructive interference with the ENSO-associated anomaly, respectively. The West Coast anomaly is found to be dominated by ENSO. We examine physical mechanisms by which MJO and ENSO teleconnections impact coastal sea levels and find consistent relationships between low-level winds and sea level pressure which are spatially-varying drivers of the variability. Two case studies reveal how MJO and ENSO teleconnection interference played a role in notable coastal flooding events. Much of the focus on sea level rise concerns the long-term trend associated with anthropogenic warming, but on shorter time scales, we find subseasonal climate variability has the potential to exacerbate the regional coastal flooding impacts.