Regime-Dependent Characteristics and Predictability of Cold Season Precipitation Events in the St. Lawrence River Valley

Andrew C. Winters, N. Bassill, J. Gyakum, J. Minder
{"title":"Regime-Dependent Characteristics and Predictability of Cold Season Precipitation Events in the St. Lawrence River Valley","authors":"Andrew C. Winters, N. Bassill, J. Gyakum, J. Minder","doi":"10.1175/waf-d-23-0218.1","DOIUrl":null,"url":null,"abstract":"\nThe St. Lawrence River Valley experiences a variety of precipitation types (p-types) during the cold season, such as rain, freezing rain, ice pellets, and snow. These varied precipitation types exert considerable impacts on aviation, road transportation, power generation and distribution, and winter recreation, and are shaped by diverse multiscale processes that interact with the region’s complex topography. This study utilizes ERA5 reanalysis data, a surface cyclone climatology, and hourly station observations from Montréal, Québec and Burlington, VT, during October–April 2000–2018 to investigate the spectrum of synoptic-scale weather regimes that induce cold season precipitation across the St. Lawrence River Valley. In particular, k-means clustering and self-organizing maps (SOMs) are used to classify cyclone tracks passing near the St. Lawrence River Valley, and their accompanying thermodynamic profiles, into a set of event types that include a U.S. East Coast track, a Central U.S. track, and two Canadian clipper tracks. Composite analyses are subsequently performed to reveal the synoptic-scale environments and the characteristic p-types that most frequently accompany each event type. GEFSv12 reforecasts are then used to examine the relative predictability of cyclone characteristics and the local thermodynamic profile associated with each event type at 0–5-day forecast lead times. The analysis suggests that forecasted cyclones near the St. Lawrence River Valley develop too quickly and are located left-of-track relative to the reanalysis on average, which has implications for forecasts of the local thermodynamic profile and p-type across the region when the temperature is near 0°C.","PeriodicalId":509742,"journal":{"name":"Weather and Forecasting","volume":"1 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/waf-d-23-0218.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The St. Lawrence River Valley experiences a variety of precipitation types (p-types) during the cold season, such as rain, freezing rain, ice pellets, and snow. These varied precipitation types exert considerable impacts on aviation, road transportation, power generation and distribution, and winter recreation, and are shaped by diverse multiscale processes that interact with the region’s complex topography. This study utilizes ERA5 reanalysis data, a surface cyclone climatology, and hourly station observations from Montréal, Québec and Burlington, VT, during October–April 2000–2018 to investigate the spectrum of synoptic-scale weather regimes that induce cold season precipitation across the St. Lawrence River Valley. In particular, k-means clustering and self-organizing maps (SOMs) are used to classify cyclone tracks passing near the St. Lawrence River Valley, and their accompanying thermodynamic profiles, into a set of event types that include a U.S. East Coast track, a Central U.S. track, and two Canadian clipper tracks. Composite analyses are subsequently performed to reveal the synoptic-scale environments and the characteristic p-types that most frequently accompany each event type. GEFSv12 reforecasts are then used to examine the relative predictability of cyclone characteristics and the local thermodynamic profile associated with each event type at 0–5-day forecast lead times. The analysis suggests that forecasted cyclones near the St. Lawrence River Valley develop too quickly and are located left-of-track relative to the reanalysis on average, which has implications for forecasts of the local thermodynamic profile and p-type across the region when the temperature is near 0°C.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
圣劳伦斯河谷冷季降水事件的季节性特征和可预测性
圣劳伦斯河谷在寒冷季节会出现多种降水类型(p-type),如降雨、冻雨、冰粒和降雪。这些不同的降水类型对航空、公路运输、发电和配电以及冬季娱乐活动产生了相当大的影响,并由与该地区复杂地形相互作用的各种多尺度过程形成。本研究利用ERA5再分析数据、地表气旋气候学以及2000年10月至2018年4月期间魁北克省蒙特利尔市和弗吉尼亚州伯灵顿市的每小时观测站观测数据,研究了诱发圣劳伦斯河谷冷季降水的各种同步尺度天气机制。其中,K-均值聚类和自组织地图(SOM)用于将经过圣劳伦斯河谷附近的气旋轨迹及其伴随的热动力剖面划分为一系列事件类型,包括美国东海岸轨迹、美国中部轨迹和两个加拿大飓风轨迹。随后进行综合分析,以揭示每种事件类型最常伴随的同步尺度环境和特征 p 型。然后使用 GEFSv12 重新预测来检验气旋特征的相对可预测性,以及在 0-5 天预报提前期与每种事件类型相关的本地热动力剖面。分析表明,圣劳伦斯河谷附近的预报气旋发展过快,而且相对于再分析的平均值偏离了轨道,这对气温接近 0℃时整个地区的当地热动力剖面和 p 型的预报产生了影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of Wind Power Prediction by Assimilating Principal Components of Cabin Radar Observations Tropical cyclones in the GEOS-S2S-2 subseasonal forecasts Regime-Dependent Characteristics and Predictability of Cold Season Precipitation Events in the St. Lawrence River Valley The evolution of the 2021 Seacor Power Tragedy in Coastal Louisiana Representation of Blowing Snow and Associated Visibility Reduction in an Operational High-Resolution Weather Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1