{"title":"Improvement of Wind Power Prediction by Assimilating Principal Components of Cabin Radar Observations","authors":"Feimin Zhang, Shang Wan, Shuanglong Jin, Hao Wang","doi":"10.1175/waf-d-24-0058.1","DOIUrl":null,"url":null,"abstract":"\nData assimilation is an important approach to improve the prediction performance of near-surface wind and wind power. Based on four-dimensional variational technique, this study proposes an approach to improve near-surface wind and wind power prediction by extracting and assimilating the principal components of cabin radar radial wind observations installed at wind turbine within wind farm. The verification for a series of cases under strong and weak vertical wind shear conditions indicates that, compared to the simulations without assimilation, the predicted ultra-short term (0–4 h) mean absolute error of near-surface wind and single turbine wind power could be reduced by 0.09–1.17 m s−1 and 53–209 kW after the assimilation of radial wind directly, while by 0.33–1.38 m s−1 and 62–239 kW after the assimilation of principal components. These illustrate that assimilating the principal components of radial wind is superior to assimilating radial wind directly, and could obviously reduce prediction error.\nFurther investigation suggests that extracting the principal components of radial wind has marginal influences on the density and distribution of observations, but could obviously reduce the fluctuation of the observations and the correlation among the observations. The prediction improvement by assimilating the principal components of radial wind is essentially due to the assimilation of low-frequency and low-correlation information involved in the observations.","PeriodicalId":509742,"journal":{"name":"Weather and Forecasting","volume":"3 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/waf-d-24-0058.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Data assimilation is an important approach to improve the prediction performance of near-surface wind and wind power. Based on four-dimensional variational technique, this study proposes an approach to improve near-surface wind and wind power prediction by extracting and assimilating the principal components of cabin radar radial wind observations installed at wind turbine within wind farm. The verification for a series of cases under strong and weak vertical wind shear conditions indicates that, compared to the simulations without assimilation, the predicted ultra-short term (0–4 h) mean absolute error of near-surface wind and single turbine wind power could be reduced by 0.09–1.17 m s−1 and 53–209 kW after the assimilation of radial wind directly, while by 0.33–1.38 m s−1 and 62–239 kW after the assimilation of principal components. These illustrate that assimilating the principal components of radial wind is superior to assimilating radial wind directly, and could obviously reduce prediction error.
Further investigation suggests that extracting the principal components of radial wind has marginal influences on the density and distribution of observations, but could obviously reduce the fluctuation of the observations and the correlation among the observations. The prediction improvement by assimilating the principal components of radial wind is essentially due to the assimilation of low-frequency and low-correlation information involved in the observations.