A data-fusion-model method for state of health estimation of Li-ion battery packs based on partial charging curve

{"title":"A data-fusion-model method for state of health estimation of Li-ion battery packs based on partial charging curve","authors":"","doi":"10.1016/j.geits.2024.100169","DOIUrl":null,"url":null,"abstract":"<div><p>The estimation of State of Health (SOH) for battery packs used in Electric Vehicles (EVs) is a complex task with significant importance, accompanied by several challenges. This study introduces a data-fusion model approach to estimate the SOH of battery packs. The approach utilizes dual Gaussian Process Regressions (GPRs) to construct a data-driven and non-parametric aging model based on charging-based Aging Features (AFs). To enhance the accuracy of the aging model, a noise model is established to replace the random noise. Subsequently, the state-space representation of the aging model is incorporated. Additionally, the Particle Filter (PF) is introduced to track the unknown state in the aging model, thereby developing the data-fusion-model for SOH estimation. The performance of the proposed method is validated through aging experiments conducted on battery packs. The simulation results demonstrate that the data-fusion model approach achieves accurate SOH estimation, with maximum errors less than 1.5%. Compared to conventional techniques such as GPR and Support Vector Regression (SVR), the proposed method exhibits higher estimation accuracy and robustness.</p></div>","PeriodicalId":100596,"journal":{"name":"Green Energy and Intelligent Transportation","volume":"3 5","pages":"Article 100169"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773153724000215/pdfft?md5=340544f53cc025b057c2325e7c2cc83e&pid=1-s2.0-S2773153724000215-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Intelligent Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773153724000215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The estimation of State of Health (SOH) for battery packs used in Electric Vehicles (EVs) is a complex task with significant importance, accompanied by several challenges. This study introduces a data-fusion model approach to estimate the SOH of battery packs. The approach utilizes dual Gaussian Process Regressions (GPRs) to construct a data-driven and non-parametric aging model based on charging-based Aging Features (AFs). To enhance the accuracy of the aging model, a noise model is established to replace the random noise. Subsequently, the state-space representation of the aging model is incorporated. Additionally, the Particle Filter (PF) is introduced to track the unknown state in the aging model, thereby developing the data-fusion-model for SOH estimation. The performance of the proposed method is validated through aging experiments conducted on battery packs. The simulation results demonstrate that the data-fusion model approach achieves accurate SOH estimation, with maximum errors less than 1.5%. Compared to conventional techniques such as GPR and Support Vector Regression (SVR), the proposed method exhibits higher estimation accuracy and robustness.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于部分充电曲线的锂离子电池组健康状态估计数据融合模型方法
估算电动汽车(EV)所用电池组的健康状况(SOH)是一项复杂而重要的任务,同时也面临着一些挑战。本研究引入了一种数据融合模型方法来估算电池组的 SOH。该方法利用双高斯过程回归(GPR)来构建基于数据驱动的非参数老化模型,该模型基于充电老化特征(AF)。为了提高老化模型的准确性,建立了一个噪声模型来替代随机噪声。随后,老化模型的状态空间表示被纳入其中。此外,还引入了粒子过滤器(PF)来跟踪老化模型中的未知状态,从而为 SOH 估算建立数据融合模型。通过对电池组进行老化实验,验证了所提方法的性能。仿真结果表明,数据融合模型方法实现了精确的 SOH 估算,最大误差小于 1.5%。与 GPR 和支持向量回归 (SVR) 等传统技术相比,所提出的方法具有更高的估计精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
0
期刊最新文献
Unveiling the power of data in bidirectional charging: A qualitative stakeholder approach exploring the potential and challenges of V2G A comprehensive overview of the alignment between platoon control approaches and clustering strategies Co-estimation of state-of-charge and state-of-temperature for large-format lithium-ion batteries based on a novel electrothermal model Towards vehicle electrification: A mathematical prediction of battery electric vehicle ownership growth, the case of Turkey A review on reinforcement learning-based highway autonomous vehicle control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1